Real-Time Updatable Globally Consistent 3D Grid Mapping
YI Xiaodong1,2, YANG Sining1, YANG Shaowu1
1.Artificial Intelligent Research Center, National Innovation Institute of Defense Technology, Beijing 100071
2.College of Computer and Technology, National University of Defense Technology, Changsha, 410073
A real time globally consistent three-dimensional(3D) grid mapping method is usually required for autonomous navigation of mobile robots in complex unknown 3D environments. Grid maps built by the existing simultaneous localization and mapping(SLAM) system are inconsistent with environments due to the lack of updating strategy. In this paper, information of environment provided by SLAM module are processed by the grid mapping module. A real-time updating strategy and an efficient data structure based on keyframe are proposed to produce globally consistent 3D maps and they are suitable for real time navigation of robots. Experimental results in dynamic indoor scenarios demonstrate that the 3D mapping method can update map in real time and build globally consistent 3D grid map to support the autonomous navigation.
[1] CADENA C, CARLONE L, CARRILLO H, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332.
[2] ENDRES F, HESS J, STURM J, et al. 3D Mapping with an RGB-D Camera. IEEE Transactions on Robotics, 2014, 30(1): 177-187.
[3] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D, et al. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163.
[4] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: Real-Time Dense Surface Mapping and Tracking // Proc of the IEEE International Symposium on Mixed and Augmented Reality. Washington, USA: IEEE, 2011: 127-136.
[5] NIEβNER M, ZOLLHÖFER M, IZADI S, et al. Real-Time 3D Reconstruction at Scale Using Voxel Hashing. ACM Transactions on Graphics(TOG), 2013, 32(6). DOI: 10.1145/2508363.2508374.
[6] MUR-ARTAL R, TARDOS J D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[7] KLEIN G, MURRAY D. Parallel Tracking and Mapping for Small AR Workspaces // Proc of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Washington, USA: IEEE, 2007: 225-234.
[8] ALBERTO E. Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer, 1989, 22(6): 46-57.
[9] HADSELL R, BAGNELL J A, HUBER D, et al. Space-Carving Kernels for Accurate Rough Terrain Estimation. International Journal of Robotics Research, 2010, 29(8): 981-996.
[10] HERBERT M, CAILLAS C, KROTKOV E, et al. Terrain Mapping for a Roving Planetary Explorer // Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 1989: 997-1002.
[11] TRIEBEL R, PFAFF P, BURGARD W. Multi-level Surface Maps for Outdoor Terrain Mapping and Loop Closing // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington, USA: IEEE, 2006: 2276-2282.
[12] MORAVEC H P. Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids. Technical Report, CMU-RI-TR-96-34. Pittsburgh, USA: Carnegie Mellon University, 1996.
[13] PAYEUR P, HÉBERT P, LAURENDEAU D, et al. Probabilistic Octree Modeling of a 3D Dynamic Environment // Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 1997: 1289-1296.
[14] FAIRFIELD N, KANTOR G, WETTERGREEN D. Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels. Journal of Field Robotics, 2007, 24(1/2): 3-21.
[15] HORNUNG A, WARM K M, BENEWITZ M, et al. Octomap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Autonomous Robots, 2013, 34(3): 189-206.
[16] MAIER O, HORNUNG A, BENNEWITZ M. Real-Time Navigation in 3D Environments Based on Depth Camera Data // Proc of the 12th IEEE-RAS International Conference on Humanoid Robots. Washington, USA: IEEE, 2012: 692-697.
[17] WHELAN T, KAESS M, LEONARD J J, et al. Deformation-Based Loop Closure for Large Scale Dense EGB-D SLAM // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington, USA: IEEE, 2013: 548-555.
[18] YANG S N, YANG S W, YI X D. Real-Time Globally Consistent 3D Grid Mapping // Proc of the IEEE International Conference on Robotics and Biomimetics. Washington, USA: IEEE, 2017: 929-935.
[19] 侯荣波,魏 武,黄 婷,等.基于ORB-SLAM 的室内机器人定位和三维稠密地图构建.计算机应用, 2017, 37(5): 1439-1444.
(HOU R B, WEI W, HUANG T, et al. Indoor Robot Localization and 3D Dense Mapping Based on ORB-SLAM. Journal of Computer Applications, 2017, 37(5): 1439-1444.)
[20] YGUEL M, AYCARD O, LAUGIER C. Update Policy of Dense Maps: Efficient Algorithms and Sparse Representation // LAUGIER C, SIEGWART R, eds. Field and Service Robotics. Berlin, Germany: Springer. 2008: 23-33.