Abstract:Based on the broad learning system(BLS), a least p-norm based BLS(LP-BLS) is proposed, and it takes the p-norm of error vector as loss function and combines the fixed-point iteration strategy. With the proposed LP-BLS, the interferences from different noises can be well dealt with by flexibly setting the value of p(p≥1), so that the modeling task of unknown data can be better completed. Numerical experiments show that the good performance of the proposed method can always be maintained with Gaussian noise, uniform noise and impulse noise. Finally, the system is applied to electroencephalogram(EEG) classification task and achieves a higher classification accuracy on most subjects.
[1] SALAKHUTDINOV R, HINTON G. An Efficient Learning Proce-dure for Deep Boltzmann Machines. Neural Computation, 2014, 24(8):1967-2006. [2] HINTON G E, OSINDERO S, TEH Y W. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 2006, 18(7): 1527-1554. [3] KARPATHY A, TODERICI G, SHETTY S, et al. Large-Scale Video Classification with Convolutional Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 1725-1732. [4] 王林玉,王 莉,郑婷一.基于卷积神经网络和关键词策略的实体关系抽取方法.模式识别与人工智能, 2017, 30(5): 465-472. (WANG L Y, WANG L, ZHENG T Y. Entity Relation Extraction Based on Convolutional Neural Network and Keywords Strategy. Pa-ttern Recognition and Artificial Intelligence, 2017, 30(5): 465-472.) [5] CHEN C L P, LIU Z L. Broad Learning System: An Effective and Efficient Incremental Learning System without the Need for Deep Architecture. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24. [6] CHEN C L P, LIU Z L, FENG S. Universal Approximation Capabi-lity of Broad Learning System and Its Structural Variations. IEEE Transactions on Neural Networks and Learning Systems, 2018. DOI: 10.1109/TNNLS.2018.2866622. [7] CHEN B D, XING L, WU Z Z, et al. Smoothed Least Mean p-Power Error Criterion for Adaptive Filtering. Digital Signal Processing, 2015, 40: 154-163. [8] SHAO T G, ZHENG Y R, BENESTY J. An Affine Projection Sign Algorithm Robust Against Impulsive Interferences. IEEE Signal Processing Letters, 2010, 17(4): 327-330. [9] LIU W F, PRINCIPE J C. HAYKIN S. Kernel Adaptive Filtering: A Comprehensive Introduction. New York, USA: John Wiley & Sons, 2010. [10] ZHAO H Q, YU Y, GAO S B, et al. A New Normalized LMAT Algorithm and Its Performance Analysis. Signal Processing, 2014, 105: 399-409. [11] WALACH E, WIDROW B. The Least Mean Fourth(LMF) Adaptive Algorithm and Its Family. IEEE Transactions on Information Theory, 1984, 30(2): 275-283. [12] CHAMBERS J A, TANRIKULU O, CONTANTINIDES A G. Least Mean Mixed-Norm Adaptive Filtering. Electronic Letters, 1994, 30(19): 1574-1575. [13] CHAMBERS J, AVLONITIES A. A Robust Mixed-Norm Adaptive Filter Algorithm. IEEE Signal Processing Letters, 1997, 4(2): 46-48. [14] PEI S C, TSENG C C. Least Mean p-Power Error Criterion for Adaptive FIR Filter. IEEE Journal on Selected Areas in Communications, 1994, 12(9): 1540-1547. [15] 常冬霞,冯大政.脉冲噪声环境的一种递归全局最小平均p-范数算法.电子学报, 2003, 31(3): 426-428. (CHANG D X, FENG D Z. An Recursive Total Least Mean p-Norm Algorithm Applied in Alpha-Stable Noise Environments. Acta Electronica Sinica, 2003, 31(3): 426-428.) [16] 赵知劲,张笑菲.核递归最小平均p-范数算法.信号处理, 2017, 33(4): 523-527. (ZHAO Z J, ZHANG X F. Kernel Recursive Least Mean p-Norm Algorithm. Journal of Signal Processing, 2017, 33(4): 523-527.) [17] YANG J, YE F, RONG H J, et al. Recursive Least Mean p-Power Extreme Learning Machine. Neural Networks, 2017, 91: 22-33. [18] BLANKERTZ B, TOMIOKA R, LEMM S, et al. Optimizing Spatial Filters for Robust EEG Single-Trial Analysis. IEEE Signal Processing Magazine, 2008, 25(1): 41-56. [19] SUN W J, SHAO S Y, ZHAO R, et al. A Sparse Auto-Encoder-Based Deep Neural Network Approach for Induction Motor Faults Classification. Measurement, 2016, 89: 171-178. [20] AGARWAL R P, MEEHAN M, O'REGAN D. Fixed Point Theory and Applications. Cambridge, UK: Cambridge University Press, 2001. [21] CHEN B D, XING L, WANG X, et al. Robust Learning with Kernel Mean p-Power Error Loss. IEEE Transactions on Cybernetics, 2018, 48(7): 2101-2113. [22] CHEN B D, WANG J J, ZHAO H Q, et al. Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion. IEEE Signal Processing Letters, 2015, 22(10): 1723-1727. [23] ZHANG Y, CHEN B D, LIU X, et al. Convergence of a Fixed-Point Minimum Error Entropy Algorithm. Entropy, 2015, 17(8): 5549-5560. [24] HUANG G B, ZHU Q Y, SIEW C K. Extreme Learning Machine: Theory and Applications. Neurocomputing, 2006, 70(1/2/3): 489-501. [25] SHI L M, LIN Y. Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference. IEEE Signal Processing Letters, 2014, 21(11): 1385-1388. [26] HSU C W, LIN C J. A Comparison of Methods for Multiclass Su-pport Vector Machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425. [27] LIANG N Y, ARATCHANDRAN P S, HUANG G B, et al. Cla-ssification of Mental Tasks from EEG Signals Using Extreme Lear-ning Machine. International Journal of Neural Systems, 2006, 16 (1): 29-38. [28] BLANKERTZ B, MULLER K R, KRUSIENSKI D J, et al. The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 153-159. [29] DOMHEGE G, BLANKERTZ B, CURIO G, et al. Boosting Bit Rates in Noninvasive EEG Single-Trial Classifications by Feature Combination and Multiclass Paradigms. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 993-1002. [30] LOTTE F, GUAN C T. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Transactions on Biomedical Engineering, 2011, 58(2): 355-362. [31] WANG H X, LI X M. Regularized Filters for L1-Norm-Based Common Spatial Patterns. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(2): 201-211. [32] 韩鸿哲,王志良,刘冀伟,等.基于线性判别分析和支持向量机的步态识别.模式识别与人工智能, 2005, 18(2): 160-164. (HAN H Z, WANG Z L, LIU J W, et al. Gait Recognition Based on Linear Discriminant Analysis and Support Vector Machine. Pa-ttern Recognition and Artificial Intelligence, 2005, 18(2): 160-164.) [33] KELLER J M, GRAY M R, GIVENS J A. A Fuzzy K-Nearest Neighbor Algorithm. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(4): 580-585. [34] CORTES C, VAPNIK V. Support-Vector Networks. Machine Lear- ning, 1995, 20(3): 273-297.