模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2019, Vol. 32 Issue (8): 699-708    DOI: 10.16451/j.cnki.issn1003-6059.201908003
“粒计算理论与应用研究”专栏 最新目录| 下期目录| 过刊浏览| 高级检索 |
可区分度与全粒度属性约简
姚坤1, 邓大勇1,2, 吴越1
1.浙江师范大学 数学与计算机科学学院 金华 321004
2.浙江师范大学 行知学院 金华 321004
Distinguishability and Attribute Reduction for Entire-Granulation Rough Sets
YAO Kun1, DENG Dayong1,2, WU Yue1
1.College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004
2.Xingzhi College, Zhejiang Normal University, Jinhua 321004

全文: PDF (680 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

全粒度粗糙集时空复杂度较高,难于计算属性约简.针对此问题,文中利用等价类定义信息系统中的可区分度,并研究其性质,证明基于可区分度的属性约简等价于绝对约简.定义决策系统中的正区域可区分度,并探究其性质,证明基于正区域可区分度约简是全粒度Pawlak约简的超集,但绝大部分情况下等于全粒度Pawlak约简,可作为全粒度Pawlak约简的近似.理论分析和实验表明,相比其它属性约简算法,基于正区域可区分度约简在计算复杂度和分类准确率等方面具有较大优势.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚坤
邓大勇
吴越
关键词 全粒度粗糙集可区分度属性约简正区域可区分度全粒度Pawlak约简    
Abstract

It is difficult to calculate attribute reduct due to high time and space complexity of entire-granulation rough sets. To solve this problem, distinguishability in information systems is defined by equivalent class, and its properties are studied. It is proved that the attribute reduct based on distinguishability is equivalent to absolute reduct. The positive region distinguishability in decision systems is defined and its properties are discussed. It is also proved that positive region distinguishability reduct is a superset of entire-granulation Pawlak reduct, but in most cases it is equal to entire-granulation Pawlak reduct and it can be regarded as an approximation of entire-granulation Pawlak reduct. Theoretical analysis and experiments show that compared with other attribute reduction algorithms, positive region distinguishability reduct has great advantages in computational complexity and classification accuracy.

Key wordsEntire-Granulation Rough Sets    Distinguishability    Attribute Reduction    Positive Region Distinguishability    Entire-Granulation Pawlak Reduct   
收稿日期: 2019-03-04     
ZTFLH: TP 18  
基金资助:

浙江师范大学网络空间安全浙江省一流学科资助

通讯作者: 邓大勇(通讯作者),博士,副教授,主要研究方向为粗糙集、粒计算、数据挖掘等.E-mail:dayongd@163.com.   
作者简介: 姚 坤,硕士研究生.主要研究方向为粗糙集.E-mail:1030570070@qq.com.吴 越,硕士研究生.主要研究方向为粗糙集.E-mail:wy@zjnu.edu.cn.
引用本文:   
姚坤, 邓大勇, 吴越. 可区分度与全粒度属性约简[J]. 模式识别与人工智能, 2019, 32(8): 699-708. YAO Kun, DENG Dayong, WU Yue. Distinguishability and Attribute Reduction for Entire-Granulation Rough Sets. , 2019, 32(8): 699-708.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201908003      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2019/V32/I8/699
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn