模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2020, Vol. 33 Issue (8): 671-680    DOI: 10.16451/j.cnki.issn1003-6059.202008001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
场景线稿动漫效果的自动上色算法
朱松1, 陈昭炯1, 叶东毅1
1.福州大学 数学与计算机科学学院 福州 350108
Automatic Colorization Algorithm with Anime Effect for Scene Sketches
ZHU Song1, CHEN Zhaojiong1, YE Dongyi1
1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108

全文: PDF (4179 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 场景线稿具有线条语义多样化的特点,直接应用现有的人像线稿图自动上色算法对其着色容易出现上色错误或棋盘效应等结果失真的现象.针对上述问题,文中提出动漫效果自动上色算法.基于条件生成对抗网络,改进和增强人像线稿图自动上色算法中常用的U型网络(U-Net)生成器的结构,设计双层信息抽取的生成器网络(DIEU-Net),自动完成场景线稿到动漫效果的上色.DIEU-Net设计用于抽取场景线稿浅层显著信息的双卷积子模块(IESS).构建双层IESS与残差结构的集成模块,插入生成器的不同阶段,增强网络在与线稿关联的颜色、位置等重要特征上的全域学习能力,缓和网络加深带来的梯度消失等网络退化问题.同时采用“卷积+上采样”操作替换U-Net生成器中原有的反卷积操作,抑制生成结果中棋盘效应的发生.实验表明,文中算法能较好地克服结果失真的问题,上色效果合理、自然,具有较好的应用推广性,可应用于多种类型景物线稿图的动漫上色.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱松
陈昭炯
叶东毅
关键词 场景线稿自动上色条件生成对抗网络(CGAN)U型网络(U-Net)残差网络    
Abstract:When the existing automatic portrait coloring algorithms are directly applied to scene sketches, distortion phenomena are caused, such as wrong colorization and checkerboard artifacts,due to the diversified line semantics of scene sketches. To address this issue, an automatic colorization algorithm with anime effect for scene sketches is put forward. The structure of U-Net generator in the existing automatic portrait coloring algorithms is improved and enhanced based on the conditional generative adversarial network. A double-layer information extraction U-Net(DIEU-Net) is designed for automatic anime effect colorization of scene sketches. Firstly, the double-convolution sub-module prominence-information extraction of a scene sketch(IESS) is designed. Then, a module integrating double-layer IESS and residual structure is inserted into different stages of the proposed generator. Thus, the global learning ability of the generator on important features, like colors and positions related to the sketch, are enhanced, and the network degradation problems caused by vanishing gradients as the network deepens, are alleviated. Moreover, the deconvolution in U-Net is replaced by the operations of convolution and upsample to suppress the occurrence of the checkerboard artifacts. Experimental results show that the proposed algorithm performs well in avoiding the distortion phenomenon and achieves more reasonable and natural coloring effect than other algorithms. Furthermore, the proposed algorithm can be applied to automatic anime coloring of various types of scene sketches.
Key wordsScene Sketch    Automatic Colorization    Condition Generative Adversarial Network(CGAN)    U-Net    Residual Network   
收稿日期: 2020-06-01     
ZTFLH: TP 391.41  
基金资助:国家自然科学基金项目(No.61672158)、福建省自然科学基金项目(No.2018J01798)资助
通讯作者: 陈昭炯,硕士,教授,主要研究方向为智能图像处理、计算智能.E-mail:chenzj@fzu.edu.cn.   
作者简介: 朱 松,硕士研究生,主要研究方向为图像处理.E-mail:song.zh@foxmail.com.叶东毅,博士,教授,主要研究方向为计算智能、数据挖掘.E-mail:yiedy@fzu.edu.cn.
引用本文:   
朱松, 陈昭炯, 叶东毅. 场景线稿动漫效果的自动上色算法[J]. 模式识别与人工智能, 2020, 33(8): 671-680. ZHU Song, CHEN Zhaojiong, YE Dongyi. Automatic Colorization Algorithm with Anime Effect for Scene Sketches. , 2020, 33(8): 671-680.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202008001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2020/V33/I8/671
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn