模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2019, Vol. 32 Issue (9): 844-854    DOI: 10.16451/j.cnki.issn1003-6059.201909009
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于CGAN的中国山水画布局可调的仿真生成方法
顾杨1,2, 陈昭炯1,2, 陈灿1,2, 叶东毅1,2
1.福州大学 数学与计算机科学学院 福州 350116
2.福州大学 空间数据挖掘与信息共享教育部重点实验室 福州 350116
Layout Adjustable Simulated Generation Method for Chinese Landscape Paintings Based on CGAN
GU Yang1,2, CHEN Zhaojiong1,2, CHEN Can1,2, YE Dongyi1,2
1.College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116
2.Key Laboratory of Spatial Data Mining and Information Sharing, Ministry of Education, Fuzhou University, Fuzhou 350116

全文: PDF (4909 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 以往的山水画计算机仿真由于未从山水画整体布局的角度进行研究,难以实现完整的画作生成.针对上述问题,文中提出布局引导、可实现完整画作生成的中国山水画仿真方法.基于山水画的绘制特点设计可行的布局标签图结构,用于表达山水画的构图形态和要素.借鉴条件生成对抗网络(CGAN)的思想,针对山水画的布局和笔触特点,设计并训练多尺度特征融合的网络结构(MSFF-CGAN),实现布局标签图到仿真山水画这一异质生成过程.同时针对网络训练过程中布局标签图数据稀缺的问题,采用语义关联的颜色像素聚类算法快速生成标签图.为了提高生成图的艺术真实感,引入MemNet超分辨网络增强生成图的纹理细节.实验表明,文中方法生成的仿真山水画具有较好的完整性和艺术真实感,不仅可以应对简单的手绘涂鸦式草图,还可以通过在布局空间的编辑操作,达到对画作空间进行编辑的效果.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾杨
陈昭炯
陈灿
叶东毅
关键词 中国山水画仿真布局可调布局标签图条件生成对抗网络(CGAN)图像修复超分辨网络(MemNet)    
Abstract:Creating a complete landscape painting via computer simulation is difficult without studying from global layout viewpoint. To address this issue, a layout-guided Chinese landscape painting simulation method for a complete painting generation is proposed. The characteristics of landscape paintings are taken into account in the design of feasible structures of layout label maps. Composition forms and elements of landscape paintings can be depicted using those structures. On the basis of condition generative adversarial network (CGAN) approach, a multi-scale feature fusion CGAN (MSFF-CGAN) is designed based on layouts and touches of landscape paintings. The proposed network is trained to accomplish heterogeneous transfer from a layout label map to a simulated landscape painting. To deal with rare availability of layout label maps for network training, a color pixel clustering algorithm with semantic correlation is used. In order to enhance the artistic reality of the generated landscape painting, a super resolution network named MemNet is incorporated to refine the texture details. Experimental results show that the proposed method is superior to existing methods in both integrity and artistic reality. Moreover, the proposed method can be used to handle simple graffiti sketches and modify simulated landscape paintings by editing label maps.
Key wordsChinese Landscape Painting Simulation    Layout Adjustable    Layout Label Map    Condition Generative Adversarial Network(CGAN)    MemNet Network   
收稿日期: 2019-04-11     
ZTFLH: TP 391.41  
基金资助:国家自然科学基金项目(No.61672158),福建省自然科学基金项目(No.2018J01798)资助
通讯作者: 陈昭炯,硕士,教授,主要研究方向为智能图像处理、计算智能.E-mail: chenzj@fzu.edu.cn.   
作者简介: 顾 杨,硕士研究生,主要研究方向为智能图像处理.E-mail:573711345@qq.com;陈 灿,硕士研究生,主要研究方向为图像处理.E-mail:756154017@qq.com;叶东毅,博士,教授,主要研究方向为计算智能、数据挖掘.E-mail:yiedy@fzu.edu.cn.
引用本文:   
顾杨, 陈昭炯, 陈灿, 叶东毅. 基于CGAN的中国山水画布局可调的仿真生成方法[J]. 模式识别与人工智能, 2019, 32(9): 844-854. GU Yang, CHEN Zhaojiong, CHEN Can, YE Dongyi. Layout Adjustable Simulated Generation Method for Chinese Landscape Paintings Based on CGAN. , 2019, 32(9): 844-854.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201909009      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2019/V32/I9/844
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn