模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2018, Vol. 31 Issue (10): 877-886    DOI: 10.16451/j.cnki.issn1003-6059.201810002
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于双层级联GAN的草图到真实感图像的异质转换
蔡雨婷1,陈昭炯1,叶东毅1
1.福州大学 数学与计算机科学学院 福州 350116
Bi-level Cascading GAN-Based Heterogeneous Conversion of Sketch-to-Realistic Images
CAI Yuting1, CHEN Zhaojiong1, YE Dongyi1
1.College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116

全文: PDF (1586 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 不同于pix2pix框架将边缘线条图转换为真实感图像的工作,文中探讨更便于人机交互的手绘草图到真实感图像的转换问题.首先设计双层级联生成对抗网络(GAN)结构实现转换任务.第一层GAN根据草图的形态结构、语义内容等信息生成粗粒度真实感图像,第二层GAN将第一层的结果转换为更生动形象的高分辨真实感图像.然后,针对上述网络训练中现有可用的“草图-图像”数据集十分稀缺的问题,提出依据给定的图像自动生成模拟草图数据的方法.通过改进HED边缘检测算法获得草图轮廓,并采用移动最小二乘策略对轮廓进行变形,模拟草图形态意向可辨、线条简洁、具有随意性的特点.实验表明,将手绘草图作为输入,文中方法转换结果图的合理性和视觉真实感优于基于边缘线条图训练的方法.此外,文中方法可以推广到涉及草图处理的其它应用领域.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡雨婷
陈昭炯
叶东毅
关键词 手绘草图异质转换级联生成对抗网络真实感图像HED边缘检测算法    
Abstract:In the pix2pix framework, edge line images are transformed into realistic ones. Different from the above, hand-drawing sketches are transformed into realistic images in this paper, which is more convenient for human-computer interaction. Firstly, bi-level cascading generative adversarial networks(GAN) are designed to implement the conversion task. The first-level GAN generates coarse-grained realistic images based on the information of the sketches, such as shape and semantic content. The second-level GAN converts the results of the first-level into more vivid high-resolution realistic images. Secondly, in view of the rare availability of "sketch-image" datasets for training the mentioned network, a method is proposed to generate simulated sketch data from a given image automatically. The sketch profile is obtained by improving the holistically nested edge detection algorithm(HED) and then deformed via moving least squares strategy to simulate characteristics of a sketch, such as discernible intention, simple lines and randomness. The experimental results show that using hand-drawing sketches as input, the proposed method outperforms the edge line training based method in terms of rationality and visual reality of the converted results. Moreover, the proposed simulated sketch generating method can be extended to other application areas related to sketch processing.
收稿日期: 2018-05-14     
ZTFLH: TP 391.41  
基金资助:国家自然科学基金项目(No.61672158)、福建省自然基金项目(No.2018J1798,2016J05155)资助
作者简介: 蔡雨婷,硕士研究生,主要研究方向为图像处理.E-mail:478301807@qq.com.;陈昭炯(通讯作者),硕士,教授,主要研究方向为智能图像处理、计算智能.E-mail:chenzj@fzu.edu.cn.;叶东毅,博士,教授,主要研究方向为计算智能、数据挖掘.E-mail:yiedy@fzu.edu.cn.
引用本文:   
蔡雨婷,陈昭炯,叶东毅. 基于双层级联GAN的草图到真实感图像的异质转换[J]. 模式识别与人工智能, 2018, 31(10): 877-886. CAI Yuting, CHEN Zhaojiong, YE Dongyi. Bi-level Cascading GAN-Based Heterogeneous Conversion of Sketch-to-Realistic Images. , 2018, 31(10): 877-886.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201810002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2018/V31/I10/877
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn