模式识别与人工智能
2025年4月7日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2021, Vol. 34 Issue (10): 885-897    DOI: 10.16451/j.cnki.issn1003-6059.202110002
“自适应分类与聚类学习”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
光滑有下界的奖惩结合损失函数的最大间隔双球模型
康倩1, 周水生1
1.西安电子科技大学 数学与统计学院 西安 710071
Maximum Margin of Twin Sphere Model via Combined Smooth Reward-Penalty Loss Function with Lower Bound
KANG Qian1, ZHOU Shuisheng1
1. School of Mathematics and Statistics, Xidian University, Xi'an 710071

全文: PDF (700 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在极度不平衡分类问题中,球形分类器将分类正确样本的损失计为零,仅使用误分样本构造决策函数.文中提出光滑有下界的奖惩结合损失函数,将分类正确样本的损失计为负,实现对目标函数的奖励,避免边界附近噪声的干扰.基于最大间隔双球面支持向量机,利用损失函数,建立奖惩结合的最大间隔双球模型.通过牛顿法构造两个同心球.小球体在覆盖多数类样本的同时抛弃多余的空隙.大球通过增加两个同心球之间的间隔,排除少数类.实验表明,文中模型分类效果较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
康倩
周水生
关键词 不平衡分类牛顿法最大间隔双球面支持向量机(MMTSSVM)同心球    
Abstract:The loss of the correctly classified samples is counted as zero by classical spherical classifier in extremely imbalanced classification. The decision function is constructed only by misclassified samples. In this paper, a smooth reward-penalty loss function with lower bound is proposed. The loss of the correctly classified samples is counted as negative in the proposed loss function. Therefore, the reward of the objective function can be realized and the interference of noise near the boundary can be avoided. Based on maximum margin of twin spheres support vector machine, a maximum margin of twin sphere model via combined reward-penalty loss function with lower bound(RPMMTS) is established. Two concentric spheres are constructed by RPMMTS using Newton's method. The majority samples are captured in the small sphere and the extra space are eliminated at the same time. By increasing the margin between two concentric spheres, the minority samples are pushed out of the large sphere as many as possible. Experimental results show that the proposed loss function makes RPMMTS better than other unbalanced classification algorithms in classification performance.
Key wordsImbalanced Classification    Newton's Method    Maximum Marge of Twin Spheres Support Vector Machine(MMTSSVM)    Concentric Sphere   
收稿日期: 2021-05-25     
ZTFLH: TP 181  
基金资助:国家自然科学基金项目(No.61772020)资助
通讯作者: 周水生,博士,教授,主要研究方向为最优化理论与算法、模式识别及应用、智能信息处理、机器学习等.E-mail:sszhou@mail.xidian.edu..cn.   
作者简介: 康 倩,硕士研究生,主要研究方向为最优化计算理论与算法、模式识别及应用.E-mail:2736387257@qq.com.
引用本文:   
康倩, 周水生. 光滑有下界的奖惩结合损失函数的最大间隔双球模型[J]. 模式识别与人工智能, 2021, 34(10): 885-897. KANG Qian, ZHOU Shuisheng. Maximum Margin of Twin Sphere Model via Combined Smooth Reward-Penalty Loss Function with Lower Bound. , 2021, 34(10): 885-897.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202110002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2021/V34/I10/885
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn