模式识别与人工智能
2025年8月11日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (8): 671-684    DOI: 10.16451/j.cnki.issn1003-6059.202308001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
面向跨数据集指静脉识别的可快速迁移模型
黄喆1, 郭成安1
1.大连理工大学 电子信息与电气工程学部 大连 116024
Fast Transferable Model for Cross-Dataset Finger Vein Recognition
HUANG Zhe1, GUO Cheng'an1
1. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024

全文: PDF (1081 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 深度学习技术在手指静脉识别任务中展现出显著的性能优势和潜力.但是,由于其昂贵的训练开销以及不同数据集间存在的类别和分布差异,在某个数据集表现优异的模型可能难以高效应用到新数据或者在新数据上表现不佳.针对识别系统被应用到不同使用群体和设备的实际情景,为了实现模型在不同数据上的高效应用并保持其优良性能,文中提出面向跨数据集指静脉识别的可快速迁移模型,包含两个学习阶段的解决方案.首先,为了得到一个可以较好泛化到未见目标数据的深度模型,在第一阶段提出基于特征对齐和聚类的领域适应算法,引导网络提取有判别力且鲁棒的特征.然后,为了减小图像中由偏差场引起的数据集差异,提出一个偏差场校正网络,消除偏差,并调整潜在分布,使其更相似.最后,为了将模型高效迁移到目标数据并充分利用新数据的模版信息,在执行快速迁移的第二阶段中,设计具有更快学习速度的基于改进极限学习机的分类器,利用它的学习算法,加速模型的迁移训练.在四个公开指静脉数据库上的实验表明,文中模型能够在实现高效迁移的同时,取得与在目标任务上进行充分端到端训练的最佳方法同等的识别性能.对于常见的应用场景,能满足实时部署的需求,从而为深度学习技术在跨数据集指静脉识别应用提供一套可行的解决方案.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄喆
郭成安
关键词 跨数据集识别快速迁移学习指静脉识别极速学习机(ELM)两阶段迁移学习    
Abstract:Deep learning-based methods show excellent recognition performance and potential in finger vein recognition. However, due to the expensive training costs and differences in categories and distributions across different datasets, a model that performs well on one dataset may struggle to efficiently adapt to new data or perform poorly on new data. A fast transferable model for cross-dataset finger vein recognition, including a two-stage solution, is proposed to realize high efficient application of model on different datasets with good performance in practical scenarios where recognition systems are applied to various user groups and devices. Firstly, in the first stage, a domain adaptation algorithm based on feature alignment and clustering is introduced to guide the network in extracting discriminative and robust features, aiming to obtain a deep model that can generalize well on unseen target data. Secondly, a bias field correction network is developed to reduce dataset gaps caused by bias fields in images and further adjust the latent distribution to make the datasets more similar to each other. Then, in the second stage of fast transfer, a modified classifier based on extreme learning machine with a faster learning speed is designed to accelerate model transfer training and make full use of the template information of new data.Experimental results on four public finger vein databases show that the proposed method realizes efficient transfer and achieves recognition performance as good as the best end-to-end training method dose in the target task. For common application scenarios, the proposed method can meet the requirements of real-time deployment and provide a feasible solution for the application of deep learning techniques in cross-dataset finger vein recognition.
Key wordsCross-Dataset Recognition    Fast Transfer Learning    Finger Vein Recognition    Extreme Learning Machine(ELM)    Two-Stage Transfer Learning   
收稿日期: 2023-05-06     
ZTFLH: TP183  
通讯作者: 郭成安,博士,教授,主要研究方向为信号与信息处理、图像处理与识别、人工智能.E-mail:cguo@dlut.edu.cn.   
作者简介: 黄喆,博士研究生,主要研究方向为基于深度学习的生物特征识别技术.E-mail:hzdlmu@mail.dlut.edu.cn.
引用本文:   
黄喆, 郭成安. 面向跨数据集指静脉识别的可快速迁移模型[J]. 模式识别与人工智能, 2023, 36(8): 671-684. HUANG Zhe, GUO Cheng'an. Fast Transferable Model for Cross-Dataset Finger Vein Recognition. Pattern Recognition and Artificial Intelligence, 2023, 36(8): 671-684.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202308001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I8/671
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn