模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (8): 685-700    DOI: 10.16451/j.cnki.issn1003-6059.202308002
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于类相似特征扩充与中心三元组损失的哈希图像检索
潘丽丽1, 马俊勇1, 熊思宇1, 邓智茂1, 胡清华2
1.中南林业科技大学 计算机与信息工程学院 长沙 410004;
2.天津大学 智能与计算学部 天津 300350
Hash Image Retrieval Based on Category Similarity Feature Expansion and Center Triplet Loss
PAN Lili1, MA Junyong1, XIONG Siyu1, DENG Zhimao1, HU Qinghua2
1. College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004;
2. College of Intelligence and Computing, Tianjin University, Tianjin 300350

全文: PDF (2101 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 现有的深度哈希图像检索方法主要采用卷积神经网络,提取的深度特征的相似性表征能力不足.此外,三元组深度哈希主要从小批量数据中构建局部三元组样本,样本数量较少,数据分布缺失全局性,使网络训练不够充分且收敛困难.针对上述问题,文中提出基于类相似特征扩充与中心三元组损失的哈希图像检索模型(Hash Image Retrieval Based on Category Similarity Feature Expansion and Center Triplet Loss, HRFT-Net).设计基于Vision Transformer的哈希特征提取模块(Hash Feature Extraction Module Based on Vision Transformer, HViT),利用Vision Transformer提取表征能力更强的全局特征信息.为了扩充小批量训练样本的数据量,提出基于类约束的相似特征扩充模块(Similar Feature Expansion Based on Category Constraint, SFEC),利用同类样本间的相似性生成新特征,丰富三元组训练样本.为了增强三元组损失的全局性,提出基于Hadamard的中心三元组损失函数(Central Triplet Loss Function Based on Hadamard, CTLH),利用Hadamard为每个类建立全局哈希中心约束,通过增添局部约束与全局中心约束的中心三元组加速网络的学习和收敛,提高图像检索的精度.在CIFAR10、NUS-WIDE数据集上的实验表明,HRFT-Net在不同长度比特位哈希码检索上的平均精度均值较优,由此验证HRFT-Net的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘丽丽
马俊勇
熊思宇
邓智茂
胡清华
关键词 图像检索深度哈希Vision Transformer(ViT)特征扩充三元组损失    
Abstract:Convolutional neural networks are commonly employed in the existing deep hashing image retrieval methods. The similarity representation of the deep features extracted by convolutional neural networks is insufficient. In addition, the local triplet samples are mainly constructed for triplet deep hashing from the small batch data, the size of the local triplet samples is small and the data distribution is lack of globality. Consequently, the network training is insufficient and the convergence is difficult. To address these issues, a model of hash image retrieval based on category similarity feature expansion and center triplet loss is proposed. A hash feature extraction module based on vision transformer is designed to extract global feature information with stronger representation ability. To expand the size of mini-batch training samples, a similar feature expansion module based on category constraint is put forward. New feature is generated by the similarity among samples of the same category to enrich the triplet training samples. To enhance the global ability of triplet loss, a center triplet loss function based on Hadamard(CTLH) is constructed. Hadamard is utilized to establish the global hash center constraint for each class. With CLTH, the learning and the convergence of the network are accelerated by adding the center triplet of local constraint and global center constraint, and the accuracy of image retrieval is improved. Experiments on CIFAR10 and NUS-WIDE datasets show that HRFT-Net gains better mean average precision for image retrieval with different bit lengths of hash code, and the effectiveness of HRFT-Net is demonstrated.
Key wordsImage Retrieval    Deep Hashing    Vision Transformer(ViT)    Feature Expansion    Triplet Loss   
收稿日期: 2023-06-19     
ZTFLH: TP391  
基金资助:湖南省自然科学基金面上项目(No.2021JJ31164)、湖南省教育厅科学研究重点项目(No.22A0195)
通讯作者: 潘丽丽,博士,副教授,主要研究方向为图像处理、深度学习.E-mail:Lily_Pan@163.com.   
作者简介: 马俊勇,硕士,主要研究方向为图像处理、深度学习.E-mail:forest_csuft@163.com. 熊思宇,硕士研究生,主要研究方向为图像处理、深度学习.E-mail:1512426188@qq.com. 邓智茂,硕士研究生,主要研究方向为图像处理、深度学习.E-mail:1149120103@qq.com. 胡清华,博士,教授,主要研究方向为大数据的不确定性建模、多模态数据的机器学习、智能无人系统.E-mail:huqinghua@tju.edu.cn.
引用本文:   
潘丽丽, 马俊勇, 熊思宇, 邓智茂, 胡清华. 基于类相似特征扩充与中心三元组损失的哈希图像检索[J]. 模式识别与人工智能, 2023, 36(8): 685-700. PAN Lili, MA Junyong, XIONG Siyu, DENG Zhimao, HU Qinghua. Hash Image Retrieval Based on Category Similarity Feature Expansion and Center Triplet Loss. Pattern Recognition and Artificial Intelligence, 2023, 36(8): 685-700.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202308002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I8/685
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn