模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (7): 626-637    DOI: 10.16451/j.cnki.issn1003-6059.202407005
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于轻量级对称CNN-Transformer的图像超分辨率重建方法
王庭伟1, 赵建伟1, 周正华2
1.中国计量大学 信息工程学院 杭州 310018;
2.浙江财经大学 数据科学学院 杭州 310018
Image Super-Resolution Reconstruction Method Based on Lightweight Symmetric CNN-Transformer
WANG Tingwei1, ZHAO Jianwei1, ZHOU Zhenghua2
1. College of Information Engineering, China Jiliang University, Hangzhou 310018;
2. School of Data Sciences, Zhejiang University of Finance & Economics, Hangzhou 310018

全文: PDF (1926 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对现有基于Transformer的图像超分辨率重建方法存在参数量过大和训练成本过高等问题,提出基于轻量级对称CNN-Transformer的图像超分辨率重建方法.首先,利用权值共享设计对称CNN-Transformer模块,经由通道注意模块充分融合上、下分支提取的信息,提高对局部特征和全局特征的捕获和利用.同时,通过深度可分离卷积并计算自注意跨通道的协方差矩阵,有效减少Transformer的参数量,降低计算成本和显存消耗.然后,引入HFERB(High-Frequency Enhancement Residual Block),进一步关注高频区间的纹理和细节信息.最后,探讨Transformer生成自注意时所需激活函数的选择,分析可知GELU激活函数能较好地促进特征聚合,提升网络性能.实验表明文中方法在保持轻量化的同时,能有效重建图像更多的纹理与细节.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王庭伟
赵建伟
周正华
关键词 图像超分辨率重建深度学习Transformer对称网络    
Abstract:To address the issues of large parameter sizes and high training cost in existing image super-resolution reconstruction methods based on Transformer, an image super-resolution reconstruction method based on lightweight symmetric CNN-Transformer is proposed. Firstly, a symmetric CNN-Transformer block is designed using weight sharing, and the information extracted from the upper and lower branches is fully integrated through channel attention block to improve the ability of the network to capture and utilize both local and global features. Meanwhile, based on the depthwise separable convolution and the calculation of the self-attention cross-channel covariance matrix, the number of parameters in Transformer is effectively decreased, as well as calculation cost and memory consumption. Secondly, a high-frequency enhancement residual block is introduced into the network to further focus on the texture and detail information in the high-frequency area. Finally, the selection of the best activation function for generating the self-attention in Transformer is explored. Experimental analysis demonstrates that GELU function can better promote feature aggregation and improve network performance. Experimental results show that the proposed method effectively reconstructs richer textures and details of the image while maintaining the lightweight of the network.
Key wordsImage Super-Resolution Reconstruction    Deep Learning    Transformer    Symmetric Network   
收稿日期: 2024-04-28     
ZTFLH: TP391  
基金资助:浙江省自然科学基金项目(No.LY22F020002)资助
通讯作者: 赵建伟,博士,教授,主要研究方向为深度学习、图像处理等.E-mail:zhaojw@cjlu.edu.cn.   
作者简介: 王庭伟,硕士研究生,主要研究方向为深度学习、图像处理等.E-mail:wtw22067@163.com.周正华,博士,副教授,主要研究方向为深度学习、图像处理等.E-mail:zzh2023@zufe.edu.cn.
引用本文:   
王庭伟, 赵建伟, 周正华. 基于轻量级对称CNN-Transformer的图像超分辨率重建方法[J]. 模式识别与人工智能, 2024, 37(7): 626-637. WANG Tingwei, ZHAO Jianwei, ZHOU Zhenghua. Image Super-Resolution Reconstruction Method Based on Lightweight Symmetric CNN-Transformer. Pattern Recognition and Artificial Intelligence, 2024, 37(7): 626-637.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202407005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I7/626
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn