模式识别与人工智能
2025年4月1日 星期二   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (8): 729-740    DOI: 10.16451/j.cnki.issn1003-6059.202408006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于特征空间增强重放和偏差校正的类增量学习方法
孙晓鹏1, 余璐1, 徐常胜2
1.天津理工大学 计算机科学与工程学院 天津 300382;
2.中国科学院自动化研究所 多模态人工智能系统全国重点实验室 北京 100190
Class-Incremental Learning Method Based on Feature Space Augmented Replay and Bias Correction
SUN Xiaopeng1, YU Lu1, XU Changsheng2
1. School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300382;
2. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190

全文: PDF (1031 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 网络不断学习新的知识时会遭受灾难性遗忘,增量学习方法可通过存储少量旧数据重放以实现增量学习的可塑性与稳定性的平衡.然而,存储旧任务的数据会有内存限制及隐私泄露的问题.针对该问题,文中提出基于特征空间增强重放和偏差校正的类增量学习方法,用于缓解灾难性遗忘.首先,每类存储一个中间层特征均值作为其代表的原型,并冻结低层特征提取网络,避免原型“漂移”.在增量学习阶段,存储的原型通过几何平移变换增强重放的方式维持先前任务的决策边界.然后,通过偏差校正为每个任务学习分类权重,进一步纠正方法分类偏向于新任务的问题.在4个基准数据集上的实验表明文中方法性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙晓鹏
余璐
徐常胜
关键词 类增量学习持续学习灾难性遗忘特征表示特征增强    
Abstract:The problem of catastrophic forgetting arises when the network learns new knowledge continuously. Various incremental learning methods are proposed to solve this problem and one mainstream approach is to balance the plasticity and stability of incremental learning through storing a small amount of old data and replaying it. However, storing data from old tasks can lead to memory limitations and privacy breaches. To address this issue, a class-incremental learning method based on feature space augmented replay and bias correction is proposed to alleviate catastrophic forgetting. Firstly, the mean feature of an intermediate layer for each class is stored as its representative prototype and the low-level feature extraction network is frozen to prevent prototype drift. In the incremental learning stage, the stored prototypes are enhanced and replayed through geometric translation transformation to maintain the decision boundaries of the previous task. Secondly, bias correction is proposed to learn classification weights for each task, further correcting the problem of model classification bias towards new tasks. Experiments on four benchmark datasets show that the proposed method outperforms the state-of-the-art algorithms.
Key wordsClass Incremental Learning    Continuous Learning    Catastrophic Forgetting    Feature Representation    Feature Enhancement   
收稿日期: 2024-06-20     
ZTFLH: TP183  
  TP391.41  
基金资助:国家自然科学基金项目(No.62202331)资助
通讯作者: 余璐,博士,副教授,主要研究方向为持续学习、表征学习.E-mail:luyu@email.tjut.edu.cn.   
作者简介: 孙晓鹏,硕士研究生,主要研究方向为持续学习.E-mail:xiaopeng12138@stud.tjut.edu.cn. 徐常胜,博士,研究员.主要研究方向为多媒体分析/索引/检索、模式识别、计算机视觉.E-mail:csxu@nlpr.ia.ac.cn.
引用本文:   
孙晓鹏, 余璐, 徐常胜. 基于特征空间增强重放和偏差校正的类增量学习方法[J]. 模式识别与人工智能, 2024, 37(8): 729-740. SUN Xiaopeng, YU Lu, XU Changsheng. Class-Incremental Learning Method Based on Feature Space Augmented Replay and Bias Correction. Pattern Recognition and Artificial Intelligence, 2024, 37(8): 729-740.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202408006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I8/729
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn