模式识别与人工智能
2025年4月21日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2025, Vol. 38 Issue (2): 101-115    DOI: 10.16451/j.cnki.issn1003-6059.202502001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于全局-局部先验和纹理细节关注的图像修复
徐祺津1, 叶海良1, 曹飞龙2, 梁吉业3
1.中国计量大学 理学院 应用数学系 杭州 310018;
2.浙江师范大学 数学科学学院 金华 321004;
3.山西大学 计算机与信息技术学院(大数据学院) 人工智能系 太原 030006
Image Inpainting Based on Global-Local Prior and Texture Details
XU Qijin1, YE Hailiang1, CAO Feilong2, LIANG Jiye3
1. Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018;
2. School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004;
3. Department of Artificial Intelligence, School of Computer and Information Technology (School of Big Data), Shanxi University, Taiyuan 030006

全文: PDF (4498 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 图像修复旨在利用周围信息填充图像中的缺失区域,然而现有基于先验的方法大多难以兼顾全局语义一致性和局部纹理细节.因此,文中提出基于全局-局部先验和纹理细节关注的图像修复方法,结合小波卷积与傅里叶卷积,构造小波-傅里叶卷积块,增强局部特征和全局特征的交互.在此基础上,提出全局-局部学习式先验,通过一个由小波-傅里叶卷积块构成的先验提取器,同时学习全局先验和局部先验.该先验提取器作用于受损图像和完整图像,分别得到受损先验和监督先验.在修复阶段,受损图像和学习的先验分别输入两个结构相似的修复分支.这两个分支均由小波-傅里叶卷积构成,能同时提取和融合全局特征与局部特征.最后,合并两个分支的输出,生成具有一致语义内容和清晰局部细节的图像.此外,构造高感受野风格损失,从语义层面提升图像风格一致性.实验表明,文中方法在多个数据集上均性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐祺津
叶海良
曹飞龙
梁吉业
关键词 图像修复学习式先验小波变换全局-局部特征    
Abstract:Image inpainting is intended to fill in missing regions of an image using surrounding information. However, existing prior-based methods often struggle to balance global semantic consistency and local texture details. In this paper, a method for image inpainting based on global-local prior and texture details is proposed. Wavelet-Fourier convolution blocks are constructed by combining wavelet convolution and Fourier convolution to enhance the interaction between local and global features. Based on the above, a global-local learning-based prior is presented. A prior extractor composed of wavelet-Fourier convolution blocks is designed to simultaneously learn global and local priors. The prior extractor is applied to both damaged and complete images to obtain damaged priors and supervised priors. During the repair phase, the damaged image and the learned priors are input into two structurally similar repair branches. Both branches are constructed with wavelet-Fourier convolutions and can simultaneously extract and fuse global and local features. Finally, the outputs of the two branches are merged to generate the image with consistent semantic content and clear local details. Additionally, a high receptive field style loss is introduced to improve image style consistency at the semantic level. Experimental results show that the proposed method outperforms existing methods on multiple datasets.
Key wordsImage Inpainting    Learning-Based Prior    Wavelet Transform    Global-Local Feature   
收稿日期: 2024-12-06     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.62176244)资助
通讯作者: 曹飞龙,博士,教授,主要研究方向为深度学习、图像处理等.E-mail:icteam@163.com.   
作者简介: 徐祺津,硕士研究生,主要研究方向为深度学习、图像处理等.E-mail:xqj1800801111@163.com. 叶海良,博士,副教授,主要研究方向为深度学习、图像处理.E-mail:yhl575@163.com. 梁吉业,博士,教授,主要研究方向为人工智能、粒计算、数据挖掘等.E-mail:ljy@sxu.edu.cn.
引用本文:   
徐祺津, 叶海良, 曹飞龙, 梁吉业. 基于全局-局部先验和纹理细节关注的图像修复[J]. 模式识别与人工智能, 2025, 38(2): 101-115. XU Qijin, YE Hailiang, CAO Feilong, LIANG Jiye. Image Inpainting Based on Global-Local Prior and Texture Details. Pattern Recognition and Artificial Intelligence, 2025, 38(2): 101-115.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202502001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2025/V38/I2/101
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn