模式识别与人工智能
2025年4月21日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2025, Vol. 38 Issue (2): 143-163    DOI: 10.16451/j.cnki.issn1003-6059.202502004
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于网络形式背景的双层网络传染病模型
范敏1,2, 陈瑞1,2, 李金海1,2
1.昆明理工大学 数据科学研究中心 昆明 650500;
2.昆明理工大学 理学院 昆明 650500
Two-Layer Network Based Epidemic Model with Network Formal Context
FAN Min1,2, CHEN Rui1,2, LI Jinhai1,2
1. Data Science Research Center, Kunming University of Science and Technology, Kunming 650500;
2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500

全文: PDF (1037 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 双层网络传染病模型已成为复杂网络动力学中的热点问题之一. 然而,现有研究忽略防疫意识和行为对传染病传播的影响,在遇到个体防疫行为差异较大时,难以反映实际的传染病传播情况.因此,文中从行为模式识别的角度出发,结合形式概念分析与微观马尔可夫链方法(Microscopic Markov Chain Approach, MMCA),提出基于网络形式背景的双层网络传染病模型.首先,定义双层网络形式背景、网络概念及其特征参数,建立形式概念分析与传染病模型的联系,不仅可描述双层网络中的概念及行为模式对应的特征参数,还可定义衰减因子,进一步借助MMCA实现上下层信息融合.然后,考虑大众媒体和政策干预对信息传播的影响,改进大众媒体函数和MMCA,并推导疫情爆发阈值.最后,通过仿真实验分析重要参数对疫情传播规模和疫情传播阈值的影响.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
范敏
陈瑞
李金海
关键词 形式概念分析概念认知双层网络传染病模型微观马尔可夫链方法(MMCA)    
Abstract:Two-layer network based epidemic models are one of the hot topics in complex network dynamics. However, existing studies overlook the impact of epidemic awareness and behavior on epidemic transmission. As a result, when there are significant differences in individual prevention behaviors, these models fail to accurately reflect real-world disease spread. To address this issue, a two-layer network based epidemic model is proposed by integrating formal concept analysis with the microscopic Markov chain approach(MMCA) from the perspective of behavioral pattern recognition. First, the two-layer network formal context, network concepts and their characteristic parameters are defined, and a bridge between formal concept analysis and epidemic models is established. This method not only describes the concepts and characteristic parameters corresponding to behavioral patterns in the two-layer network, but also defines a decay factor to further facilitate the integration of information across layers using MMCA. Second, the influence of mass media and policy interventions on information diffusion is taken into account, the mass media function and the MMCA model are improved, and the epidemic outbreak threshold is derived. Finally, simulation experiments are conducted to analyze the impact of several key parameters on epidemic spread scale and threshold.
Key wordsFormal Concept Analysis    Concept Cognition    Two-Layer Network Based Epidemic Mo-del    Microscopic Markov Chain Approach   
收稿日期: 2025-01-26     
ZTFLH: TP18  
基金资助:国家自然科学基金项目(No.62476114)、云南省基础研究计划项目(No.202401AV070009)资助
通讯作者: 李金海,博士,教授,主要研究方向为认知计算、粒计算、大数据分析、概念格、粗糙集.E-mail:jhlixjtu@163.com.   
作者简介: 范 敏,博士,副教授,主要研究方向为数据挖掘、粗糙集、粒计算、社会网络分析.E-mail:fmkmust@163.com. 陈 瑞,硕士研究生,主要研究方向为网络形式背景、双层网络传染病模型.E-mail:chenrui1@stu.kust.edu.cn.
引用本文:   
范敏, 陈瑞, 李金海. 基于网络形式背景的双层网络传染病模型[J]. 模式识别与人工智能, 2025, 38(2): 143-163. FAN Min, CHEN Rui, LI Jinhai. Two-Layer Network Based Epidemic Model with Network Formal Context. Pattern Recognition and Artificial Intelligence, 2025, 38(2): 143-163.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202502004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2025/V38/I2/143
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn