模式识别与人工智能
   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能
22 学术不端论文认定及处理办法
22 版权转让协议
22 保密证明
22 录用稿件电子版要求
22 修改说明格式
更多....
22 中国自动化学会
22 国家智能计算机研发中心
22 中科院合肥智能机械所
更多....
 
 
2017年 30卷 9期 刊出日期 2017-09-30

论文与报告
研究与应用
 
论文与报告
769 基于决策规则的形式背景属性约简*
李同军,徐颖聪,吴伟志,顾沈明
在经典形式背景中,利用对象和属性间的二元关系定义一对粗糙模糊上、下近似算子,讨论算子的基本性质,指出算子与已有粗糙近似算子的关系.利用定义的粗糙模糊上、下近似算子,得到两类决策规则,即确定性决策规则和可能性决策规则.针对两类决策规则,提出下近似约简和上近似约简的概念,关于上近似约简,得到可约属性和属性协调集的判别条件,给出属性约简方法,并举例说明方法的可行性.
2017 Vol. 30 (9): 769-778 [摘要] ( 643 ) [HTML 1KB] [PDF 563KB] ( 411 )
779 弹性核子空间聚类*
张鹏涛,陈晓云
现有子空间聚类算法通常假设数据来自多个线性子空间,无法处理时间序列聚类中存在的非线性和时间轴弯曲问题.为了克服这些局限,通过引入核技巧和弹性距离,提出弹性核低秩表示子空间聚类和弹性核最小二乘回归子空间聚类,统称为弹性核子空间聚类,并从理论上证明弹性核最小二乘回归子空间算法的组效应和弹性核低秩表示子空间聚类算法的收敛性.在5个UCR时间序列数据集上的实验表明本文算法的有效性.
2017 Vol. 30 (9): 779-790 [摘要] ( 521 ) [HTML 1KB] [PDF 729KB] ( 500 )
791 判别外观模型下的寻优匹配跟踪算法*
刘万军,刘大千,费博雯
针对模型匹配跟踪算法易受遮挡、复杂背景等因素影响的问题,提出判别外观模型下的寻优匹配跟踪算法.首先,提取前5帧图像的局部特征块,建立由特征块组成的训练样本集,并利用颜色、纹理特征进行聚类组建判别外观模型.然后,利用双向最优相似匹配方法进行目标检测.为了解决复杂背景干扰,提出前景划分方法约束匹配过程,得到更准确的匹配结果.最后,定期将跟踪结果加入聚类集合以更新外观模型.实验表明,由于利用多帧训练的判别外观模型及双向最优相似匹配方法,算法在局部遮挡、复杂背景等条件下的跟踪准确率较高.
2017 Vol. 30 (9): 791-802 [摘要] ( 526 ) [HTML 1KB] [PDF 3443KB] ( 422 )
803 基于环型网络模体应用马尔科夫聚类的图挖掘模型*
任永功,索全明,刘洋
针对图数据挖掘效率低、精度低等问题,提出基于环型网络模体应用马尔科夫聚类的图挖掘模型.首先,依据输入图的点集,采用Erdo″s-Rényi模型生成随机图,在输入图和随机图的子图挖掘过程中利用向量的加法性质判定环型子图,计算网络模体的统计特征,判断子图是否为网络模体.然后,求解图中边的绝对贡献值关联矩阵,通过动态阈值法求得阈值,二值化处理该矩阵.最后,对已稀疏化的图进行扩张和膨胀操作,使其达到收敛状态.实验表明,文中模型有效减少运行时间,在保证聚类质量同时提高图挖掘效率.
2017 Vol. 30 (9): 803-814 [摘要] ( 456 ) [HTML 1KB] [PDF 888KB] ( 397 )
815 高斯核选择的线性性质检测方法*
韩志卓,廖士中
核选择直接影响核方法的性能.已有高斯核选择方法的计算复杂度为Ω(n2),阻碍大规模核方法的发展.文中提出高斯核选择的线性性质检测方法,不同于传统核选择方法,询问复杂度为O(ln(1/δ)/ 2),计算复杂度独立于样本规模.文中首先给出函数 线性水平的定义,证明可使用 线性水平近似度量一个函数与线性函数类之间的距离,并以此为基础提出高斯核选择的线性性质检测准则.然后应用该准则,在随机傅里叶特征空间中有效评价并选择高斯核.理论分析与实验表明,应用性质检测以实现高斯核选择的方法有效可行.
2017 Vol. 30 (9): 815-821 [摘要] ( 487 ) [HTML 1KB] [PDF 587KB] ( 500 )
研究与应用
822 面向函数型数据的快速特征选择方法*
马忱,王文剑,姜高霞
函数型数据的特征选择是从庞大的函数信息中选出那些相关性小、代表性强的少部分特征,以简化后期分类器的计算,提高泛化能力.由于特征选择方法用于函数数据分类效果并不理想,文中提出面向函数型数据的结合主成分分析法和最小凸包法的快速特征选择(FFS)方法,可以快速获得稳定的特征子集.此外,考虑到特征之间可能存在相关性,将FFS的结果作为其它方法的初始特征子集,故融合FFS与条件互信息方法.在UCR数据集上的实验证明FFS的有效性,并通过对比实验给出在不同时间代价和分类精度需求下的方法选择策略.
2017 Vol. 30 (9): 822-832 [摘要] ( 574 ) [HTML 1KB] [PDF 974KB] ( 362 )
833 基于径向基神经网络和正则化极限学习机的多标签学习模型*
单东,许新征
相比径向基(RBF)神经网络,极限学习机(ELM)训练速度更快,泛化能力更强.同时,近邻传播聚类算法(AP)可以自动确定聚类个数.因此,文中提出融合AP聚类、多标签RBF(ML-RBF)和正则化ELM(RELM)的多标签学习模型(ML-AP-RBF-RELM).首先,在该模型中输入层使用ML-RBF进行映射,且通过AP聚类算法自动确定每一类标签的聚类个数,计算隐层节点个数.然后,利用每类标签的聚类个数通过K均值聚类确定隐层节点RBF函数的中心.最后,通过RELM快速求解隐层到输出层的连接权值.实验表明,ML-AP-RBF-RELM效果较好.
2017 Vol. 30 (9): 833-840 [摘要] ( 632 ) [HTML 1KB] [PDF 607KB] ( 352 )
841 基于超网络的基因和脑影像关联分析*
李蝉秀,郝小可,张道强
基因影像学现有研究大多只重视脑部感兴趣区域的特征提取,而针对脑区与脑区之间相互关联这种连接性特征的研究工作相对较少.最近的研究显示使用结构化的网络模型量化脑区之间的复杂连接可以更好地反映大脑的综合特性.因此,文中提出基于超网络的稀疏多任务典型相关分析算法.首先使用稀疏表示的方法从功能核磁共振图像(fMRI)的时间序列中建立超网络,然后从超网络中提取3种聚类系数作为脑影像特征,最后采用稀疏多任务典型相关分析求得基因与3种影像特征之间的关联.在ADNI数据集上的实验证明文中算法不仅有助于提高基因与影像之间关联分析的能力,还可以发现一些与疾病密切相关的遗传风险因素.
2017 Vol. 30 (9): 841-849 [摘要] ( 796 ) [HTML 1KB] [PDF 1013KB] ( 674 )
850 基于最佳局部差值编码位的手指静脉识别*
袭肖明,尹义龙,张梦羽,杨璐,孟宪静,杜亨方
针对手指静脉识别技术中现有编码特征局部细节信息和区分性信息利用不充分的问题,文中提出基于最佳局部差值编码位(BLDCB)的手指静脉识别方法.设计局部差值编码提取方法获取图像的编码特征,提出基于相关性和散度的最佳位挖掘方法.引入条件概率计算编码位与目标的相关性,挖掘鲁棒位.计算鲁棒位之间的类间散度,获取具有区分性的鲁棒位,作为最佳位.在公开的PloyU手指静脉数据库和MLA手指静脉数据库上的实验验证文中方法可以进一步提高身份验证的精度和速度.
2017 Vol. 30 (9): 850-858 [摘要] ( 644 ) [HTML 1KB] [PDF 1466KB] ( 496 )
859 基于混淆矩阵的多目标优化三支决策模型*
徐健锋,苗夺谦,张远健
鉴于混淆矩阵在机器学习算法性能评价领域的通用性,文中以混淆矩阵为基础构造概率粗糙集三支决策度量系统,给出部分度量指标之间的性质及其证明,提出基于混淆矩阵度量指标体系的多目标优化三支决策阈值求解模型.模型中多目标优化函数被视为不同三支决策度量指标的加权之和,而最优阈值的求解也获得一种新型的语义解释.最后通过实例演示模型如何确定接受与拒绝域阈值,同时对比Pawlak粗糙集方法,表明文中模型获得的三支决策能够更好地平衡决策的准确率与承诺率.
2017 Vol. 30 (9): 859-864 [摘要] ( 579 ) [HTML 1KB] [PDF 512KB] ( 363 )
模式识别与人工智能
 

主管:中国科学技术协会
主办:中国自动化学会
   国家智能计算机研究开发中心
   中国科学院合肥智能机械研究所
出版:科学出版社
 
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn