[1] COLLINS R T, BIERNACKI C, CELEUX G, et al. Introduction to the Special Section on Video Surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 745-746.
[2] HARITAOGLU I, HARWOOD D, DAVIS L S. W4: Real-Time Surveillance of People and Their Activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809-830.
[3] SIEBEL N T, MAYBANK S J. The Advisor Visual Surveillance System[C/OL]. [2017-10-25]. https://www.informatik.uni-kiel.de//inf/Sommer/doc/Publications/nts/SiebelMaybank2004-acv.pdf.
[4] 孔晓东.智能视频监控技术研究.博士学位论文.上海:上海交通大学, 2008.
(KONG X D. Research on Intelligent Video Surveillance Technology. Ph.D. Dissertation. Shanghai, China: Shanghai Jiao Tong University, 2008.)
[5] 贾春华.智能监控中的行人检测与运动分析研究.硕士学位论文.大连:大连理工大学, 2008.
(JIA C H. Research on Real-Time Human Detection and Motion Analysis of Intelligent Surveillance. Master Dissertation. Dalian, China: Dalian University of Technology, 2008.)
[6] 焦 波.面向智能视频监控的运动目标检测与跟踪方法研究.博士学位论文.长沙:国防科学技术大学, 2009.
(JIAO B. Research on Moving Object Detection and Tracking Me-thods for Intelligent Video Surveillance. Ph.D. Dissertation. Changsha, China: National University of Defense Technology, 2009.)
[7] 赵久奋,王明海.红外探测阵列对固体导弹尾焰跟踪定位的研究.固体火箭技术, 2000, 23(4): 64-68.
(ZHAO J F, WANG M H. A Study on Missile Plume Tracking and Localizing by Means of Forward Looking Infra-Red(FLIR). Journal of Solid Rocket Technology, 2000, 23(4): 64-68.)
[8] 卢莉萍.目标跟踪算法与检测处理技术研究.博士学位论文.南京:南京理工大学, 2012.
(LU L P. Study on Targets Tracking Algorithm and Detection Processing Technology. Ph.D. Dissertation. Nanjing, China: Nanjing University of Science and Technology, 2012.)
[9] LU H C, FANG G L, WANG C, et al. A Novel Method for Gaze Tracking by Local Pattern Model and Support Vector Regress. Signal Processing, 2010, 90(4): 1290-1299.
[10] PRENDINGER H, DESCAMPS S, ISHIZUKA M. Scripting Affective Communication with Life-Like Characters in Web-Based Interaction Systems. Applied Artificial Intelligence, 2002, 16(7/8): 519-553.
[11] LU H C, HUANG Y J, CHEN Y W. Automatic Facial Expression Recognition Based on Pixel-Pattern-Based Texture Feature. International Journal of Image Systems and Technology, 2010, 20(3): 253-260.
[12] MITRA S, ACHARYA T. Gesture Recognition: A Survey. IEEE Transactions on Systems, Man, and Cybernetics(Applications and Reviews), 2007, 37(3): 311-324.
[13] EROL A, BEBIS G, NICOLESCU M, et al. Vision-Based Hand Pose Estimation: A Review. Computer Vision and Image Understanding, 2007, 108(1/2): 52-73.
[14] 王 亮,胡卫明,谭铁牛.人运动的视觉分析综述.计算机学报, 2002, 25(3): 225-237.
(WANG L, HU W M, TAN T N. A Survey of Visual Analysis of Human Motion. Chinese Journal of Computer, 2002, 25(3): 225-237.)
[15] GANAPATHI V, PLAGEMANN C, KOLLER D, et al. Real Time Motion Capture Using a Single Time-of-Flight Camera // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 755-762.
[16] KASTRINAKI V, ZERVAKIS M E, KALAITZAKIS K. A Survey of Video Processing Techniques for Traffic Applications. Image and Vision Computing, 2003, 21(4): 359-381.
[17] 崔雨勇.智能交通监控中运动目标检测与跟踪算法研究.博士学位论文.武汉:华中科技大学, 2012.
(CUI Y Y. A Dissertation Submitted on Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science. Ph.D. Dissertation. Wuhan, China: Huazhong University of Science and Technology, 2012.)
[18] RIOS-CABRERA R, TUYTELAARS T, VAN GOOL L. Efficient Multi-camera Vehicle Detection, Tracking, and Identification in a Tunnel Surveillance Application. Computer Vision and Image Understanding, 2012, 116(6): 742-753.
[19] DESOUZA G N, KAK A C. Vision for Mobile Robot Navigation: A Survey. IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2002, 24(2): 237-267.
[20] BONIN-FONT F, ORTIZ A, OLIVER G. Visual Navigation for Mobile Robots: A Survey. Journal of Intelligent and Robotic Systems, 2008, 53(3): 263-296.
[21] ANDRILUKA M, ROTH S, SCHIELE B. Pictorial Structures Revisited: People Detection and Articulated Pose Estimation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 1014-1021.
[22] BOURDEVL D, MALIK J. Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations // Proc of the 12th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2009: 1365-1372.
[23] AGARWAL S, FURUKAWA Y, SNAVELY N, et al. Building Rome in a Day. Communications of the ACM, 2011, 54(10): 105-112.
[24] XIAO J X, FURUKAWA Y. Reconstructing the World′s Mu-seums. International Journal of Computer Vision, 2014, 110(3): 243-258.
[25] 乐 宁.基于视觉的直升机飞行模拟及跟踪系统研究.硕士学位论文.南京:南京理工大学, 2010.
(LE N. Vision-Based Helicopter Simulation and Tracking System Research. Master Dissertation. Nanjing, China: Nanjing University of Science and Technology, 2010.)
[26] STEFANSIC J D, BASS W A, HARTMANN S L, et al. Design and Implementation of a PC-Based Image-Guided Surgical System. Computer Methods and Programs in Biomedicine, 2002, 69(3): 211-224.
[27] REVELL J, MIRMEHDI M, MCNALLY D. Computer Vision Elastography: Speckle Adaptive Motion Estimation for Elastography Using Ultrasound Sequences. IEEE Transactions on Medical Imaging, 2005, 24(6): 755-766.
[28] ZHAO Q P. A Survey on Virtual Reality. Science in China(Information Sciences), 2009, 52(3): 348-400.
[29] BERRYMANA D R. Augmented Reality: A Review. Medical Re-ference Services Quarterly, 2012, 31(2): 212-218.
[30] ROSS D A, LIM J, LIN R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141.
[31] COMANICIU D, RAMESH V, MEER P. Real-Time Tracking of Non-rigid Objects Using Mean Shift // Proc of the IEEE Conf-erence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2000, II: DOI:10.1109/CVPR.2000.854761.
[32] DALAL N, TRIGGS B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2005: 886-893.
[33] VIOLA P, JONES M J. Robust Real-Time Face Detection. International Journal of Computer Vision, 2004, 57(2): 137-154.
[34] TUYTELAARS T, MIKOLAJCZYK K. Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision, 2007, 3(3): 177-280.
[35] WANG S, LU H, YANG F, et al. Super Pixel Tracking // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2011: 1323-1330.
[36] COMANICIU D, RAMESH V, MEER P. Kernel-Based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
[37] PREZ P, HUE C, VERMAAK J, et al. Color-Based Probabilistic Tracking // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2002: 661-675.
[38] LI Y, AI H Z, YAMASHITA T, et al. Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Life Spans. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10): 1728-1740.
[39] CHENG Y Z. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
[40] COLLINS R T. Mean-Shift Blob Tracking through Scale Space // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2003: 234-240.
[41] HAGER G D, DEWAN M, STEWART C V. Multiple Kernel Tracking with SSD // Proc of the IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2004: 790- 797.
[42] YAO A B, LIN X G, WANG G J, et al. A Compact Association of Particle Filtering and Kernel Based Object Tracking. Pattern Re-cognition, 2012, 45(7): 2584-2597.
[43] ADAM A, RIVLIN E, SHIMSHONI I. Robust Fragments-Based Tracking Using the Integral Histogram // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2006: 798-805.
[44] WANG F L, YU S Y, YANG J. Robust and Efficient Fragments-Based Tracking Using Mean Shift. AEU-International Journal of Electronics and Communications, 2010, 64(7): 614-623.
[45] JIA X, WANG D, LU H C. Fragment-Based Tracking Using Online Multiple Kernel Learning // Proc of the IEEE International Conference on Image Processing. Washington, USA: IEEE, 2012: 393-396.
[46] YANG F, LU H C, ZHANG W H, et al. Visual Tracking via Bag of Features. IET Image Processing, 2012, 6(2): 115-128.
[47] ZHONG W, LU H C, YANG M H. Robust Object Tracking via Sparsity-Based Collaborative Model // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2012: 1838-1845.
[48] LIU B Y, HUANG J Z, YANG L, et al. Robust Tracking Using Local Sparse Appearance Model and k-Selection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2011: 1313-1320.
[49] TURK M, PENTLAND A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
[50] FRIEDMAN J H. Regularized Discriminant Analysis. Journal of the American Statistical Association, 1989, 84: 165-175.
[51] HE X F, YAN S C, HU Y X, et al. Face Recognition Using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
[52] YAN S C, XU D, ZHANG B Y, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
[53] YU Q, DINH T B, MEDIONI G G. Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers // Proc of the 10th European Conference on Computer Vision. Berlin, Germany: Springer, 2008, II: 678-691.
[54] DONOHO D L. Compressed Sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[55] WRIGHT J, MA Y, MARAL J, et al. Sparse Representation for Computer Vision and Pattern Recognition. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
[56] MEI X, LING H B. Robust Visual Tracking Using l1 Minimization // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2009: 1436-1443.
[57] YANG H X, SHAO L, ZHENG F, et al. Recent Advances and Trends in Visual Tracking: A Review. Neurocomputing, 2011, 74(18): 3823-3831.
[58] LIU H P, SUN F C. Visual Tracking Using Sparsity Induced Similarity // Proc of the 20th IEEE International Conference on Pattern Recognition. Washington, USA: IEEE, 2010: 1702-1705.
[59] GRABNER H, GRABNER M, BISCHOF H. Real-Time Tracking via On-line Boosting // Proc of the British Machine Vision Confe-rence. Berlin, Germany: Springer, 2006: 47-56.
[60] GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised On-line Boosting for Robust Tracking // Proc of the 10th European Conference on Computer Vision. Berlin, Germany: Springer, 2008: 234-247.
[61] SHI Y, KARL W C. Real-Time Tracking Using Level Sets // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2005: 34-41.
[62] MALCOLM J G, RATHI Y, TANNENBAUM A. Multi-object Tracking through Clutter Using Graph Cuts // Proc of the 11th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2007. DOI: 10.1109/ICCV.2007.4409178.
[63] TA D N, CHEN W C, GELFAND N, et al. SURFTrack: Efficient Tracking and Continuous Object Recognition Using Local Feature Descriptors // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 2937-2944.
[64] WANG X Y, HUA G, HAN T X. Discriminative Tracking by Me-tric Learning // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2010: 200-214.
[65] BOLME D S, BEVERIDE J R, DRAPER B A, et al. Visual Object Tracking Using Adaptive Correlation Filter // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 2544-2550.
[66] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels // Proc of the 12th European Conference on Computer Vision. Berlin, Germany: Springer, 2012: 702-715.
[67] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive Co-lor Attributes for Real-Time Visual Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 1090-1097.
[68] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-Speed Tracking with Kernelized Correlation Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
[69] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary Learners for Real-Time Tracking // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1401-1409.
[70] TANG M, FENG J. Multi-kernel Correlation Filter for Visual Tra-cking // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2016: 3038-3046.
[71] ZHANG K H, ZHANG L, YANG M H, et al. Fast Tracking via Spatio-Temporal Context Learning[J/OL]. [2017-10-21]. https://arxiv.org/pdf/1311.1939v1.pdf.
[72] CHOI J, CHANG H J, YUN S, et al., eds. Attentional Correlation Filter Network for Adaptive Visual Tracking // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 4807-4816.
[73] LI Y, ZHU J K. A Scale Adaptive Kernel Correlation Filter Trac-ker with Feature Integration // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 254-265.
[74] DANELLJAN M, HGER G, KHAN F S. Accurate Scale Estimation for Robust Visual Tracking[C/OL]. [2017-10-21]. http://www.cvl.isy.liu.se/research/objrec/visualtracking/scalvistrack/ScaleTracking_BMVC14.pdf.
[75] LI Y, ZHU J K, HOI S C H. Reliable Patch Trackers: Robust Visual Tracking by Exploiting Reliable Patches // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 353-361.
[76] LIU T, WANG G, YANG Q X. Real-Time Part-Based Visual Tracking via Adaptive Correlation Filters // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 4902-4912.
[77] FAN H, XIANG J H. Robust Visual Tracking via Local-Global Correlation Filter[C/OL]. [2017-10-21]. https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14351/14276.
[78] LUKEZ∨IC∨ A, C∨EHOVIN L. Deformable Parts Correlation Filters for Robust Visual Tracking[J/OL]. [2017-10-21]. https://arxiv.org/pdf/1605.03720v1.pdf.
[79] BIBI A, MUELLER M, GHANEM B. Target Response Adaptation for Correlation Filter Tracking // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 419-433.
[80] SUI Y, ZHANG Z M, WANG G H, et al. Real-Time Visual Tracking: Promoting the Robustness of Correlation Filter Learning // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 662-678.
[81] GALOOGAHI H K, SIM T, LUCEY S. Correlation Filters with Limited Boundaries // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 4630-4638.
[82] DANELLJAN M, HGER G , KHAN F S, et al. Learning Spatia-lly Regularized Correlation Filters for Visual Tracking // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 4310-4318.
[83] DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond Co-rrelation Filters: Learning Continuous Convolution Operators for Visual Tracking // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 472-488.
[84] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: Efficient Convolution Operators for Tracking[C/OL]. [2017-10-21].https://arxiv.org/pdf/1611.09224.pdf.
[85] LUKEZ∨IC∨ A, VOJI/R∨ T, ZAJC L C∨, et al. Discriminative Correlation Filter with Channel and Spatial Reliability // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 4847-4856.
[86] MUELLER M, SMITH N, GHANEM B. Context-Aware Correlation Filter Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017. 1396-1404.
[87] ZUO W M, WU X H, LIN L, et al. Learning Support Correlation Filters for Visual Tracking[J/OL]. [2017-10-21]. https://arxiv.org/pdf/1601.06032v1.pdf.
[88] WANG M M, LIU Y, HUANG Z Y. Large Margin Object Tracking with Circulant Feature Maps[J/OL]. [2017-10-21]. https://arxiv.org/pdf/1703.05020.pdf.
[89] ZHANG T Z, XU C S, YANG M H. Multi-task Correlation Particle Filter for Robust Visual Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 4335-4343.
[90] MA C, HUANG J B, YANG X K, et al. Hierarchical Convolutio-nal Features for Visual Tracking // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 3074-3082.
[91] QI Y K, ZHANG S P, QIN L, et al. Hedged Deep Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Re-cognition. Washington, USA: IEEE, 2016: 4303-4311.
[92] GLADH S, DANELLJAN M, KHAN F S, et al. Deep Motion Features for Visual Tracking[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1612.06615v1.pdf.
[93] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-Convolutional Siamese Networks for Object Tracking // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 850-865.
[94] VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. End-to-End Representation Learning for Correlation Filter Based Tra-cking[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1704.06036.pdf.
[95] WANG Q, GAO J, XING J L, et al. DCFNET: Discriminant Co-rrelation Filters Network for Visual Tracking[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1704.04057v1.pdf.
[96] CUI Z, XIAO S T, FENG J S, et al. Recurrently Target-Attending Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1449-1458.
[97] WANG N Y, YEUNG D. Learning a Deep Compact Image Representation for Visual Tracking // BURGES C J C, BOTTOU L, WELLING M, et al., eds. Advances in Neural Information Processing Systems 26. Cambridge, USA: The MIT Press, 2013: 809-817.
[98] WANG N Y, LI S Y, GUPTA A, et al. Transferring Rich Feature Hierarchies for Robust Visual Tracking[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1501.04587.pdf.
[99] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Cla-ssification with Deep Convolutional Neural Networks // PEREIRA F, BURGES C J C, BOTTOU L, et al., eds. Advances in Neural Information Processing Systems 22. Cambridge, USA: The MIT Press, 2012: 1097-1105.
[100] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1409.1556v6.pdf.
[101] SZEGEDY C, LIU W, JIA Y Q, et al. Going Deeper with Convolutions[C/OL]. [2017-10-21]. https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf.
[102] HE K M, ZHANG X Y, RE S Q, et al. Deep Residual Learning for Image Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 770-778.
[103] WANG L J, OUYANG W L, WANG X G, et al. Visual Tracking with Fully Convolutional Networks // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 3119-3127.
[104] WANG L J, OUYANG W L, WANG X G, et al. STCT: Sequentially Training Convolutional Networks for Visual Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1373-1381.
[105] NAM H, HAN B. Learning Multi-domain Convolutional Neural Networks for Visual Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 4293-4302.
[106] FAN H, LING H B. SANET: Structure-Aware Network for Visual Tracking[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1611.06878v1.pdf.
[107] NAM H, BAEK M, HAN B. Modeling and Propagating CNNs in a Tree Structure for Visual Tracking[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1608.07242.pdf.
[108] HELD D, THRUN S, SAVARESE S. Learning to Track at 100 FPS with Deep Regression Networks // Proc of the IEEE Conference on Computer Vision. Washington, USA: IEEE, 2016: 749-765.
[109] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-Time Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 779-788.
[110] NING G H, ZHANG Z, HUANG C, et al. Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tra-cking[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1607.05781.pdf.
[111] YUN S, CHOI J, YOO Y, et al. Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2017: 2711-2720.
[112] CHOI J, KWON J, LEE K M. Visual Tracking by Reinforced Decision Making[C/OL]. [2017-10-21]. https://arxiv.org/pdf/1702.06291.pdf. |