模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2011, Vol. 24 Issue (5): 629-636    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于局部相关维度的流形离群点检测算法
黄添强1,2,李凯1,郭躬德1
1.福建师范大学数学与计算机科学学院计算机科学系福州350007
2.清华大学计算机科学与技术系北京100084
Manifold Outlier Detection Algorithm Based on Local-Correlation Dimension
HUANG Tian-Qiang1,2, LI Kai1, GUO Gong-De1
1.Department of Computer Science, School of Mathematics Computer Science, Fujian Normal University, Fuzhou 350007
2.Department of Computer Science and Technology, Tsinghua University, Beijing 100084

全文: PDF (482 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 传统的离群点检测算法不适合检测流形离群点,目前专门针对流形离群点检测的算法报道较少。为此,基于实验观察的启示,提出用流形局部相关维度检测流形离群点的算法。首先探讨内在维度的性质,并基于实验观察提出用流形局部相关维度来度量流形离群点,然后证明流形局部相关维度可表征数据样本离群的性质,最后基于此性质提出流形离群点检测算法。在人工数据与真实数据上的实验表明本算法可检测流形离群点,且本算法比最近报道的流形除噪算法具有更优的性能。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄添强
李凯
郭躬德
关键词 数据挖掘离群点检测流形学习局部相关维度    
Abstract:Traditional outlier detection algorithm is not suitable for detection of manifold outlier. There are reports of denoising algorithm for manifold learning, but fewer reports of manifold outlier detection algorithms. Therefore, the manifold outlier detection algorithm is proposed based on the local-correlation dimension according to experimental observations. Firstly, the nature of the intrinsic dimension is discussed, and the local-correlation dimension is used to measure the manifold outlier, which is based on experimental observations. And then it is proved that the nature of outliers on manifolds can be characterized by local-correlation dimension. Finally, the manifold outlier detection algorithm based on local-correlation dimension is proposed according to the nature. The performance evaluation of the artificial data and the real data shows that the algorithm can detect manifold outliers and it has better performance than the recently reported manifold blurry mean shif algorithm.
Key wordsData Mining    Outlier Detection    Manifold Learning    Local-Correlation Dimension   
收稿日期: 2011-05-09     
ZTFLH: TP181  
基金资助:国家自然科学基金项目(No.61070062)、福建省自然科学基金项目(No.2008J04004)、高校产学合作重大项目(No.2010H6007)资助
作者简介: 黄添强,男,1971年生,博士,副教授,主要研究方向为机器学习、视频数据挖掘.E-mail:fjhtq@fjnu.edu.cn.李凯,男,1984年生,硕士研究生,主要研究方向为数据挖掘.郭躬德,男,1965年生,博士,教授,主要研究方向为人工智能、机器学习、数据挖掘.
引用本文:   
黄添强,李凯,郭躬德. 基于局部相关维度的流形离群点检测算法[J]. 模式识别与人工智能, 2011, 24(5): 629-636. HUANG Tian-Qiang, LI Kai, GUO Gong-De. Manifold Outlier Detection Algorithm Based on Local-Correlation Dimension. , 2011, 24(5): 629-636.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2011/V24/I5/629
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn