模式识别与人工智能
2025年4月2日 星期三   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2012, Vol. 25 Issue (2): 256-261    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于全局和分离部件融合的双L1稀疏表示人脸图像识别算法
胡正平,宋淑芬
燕山大学信息科学与工程学院秦皇岛066004
Bi-L1 Sparse Representation Algorithm for Face Recognition Based on Fusion of Global and Separated Components
HU Zheng-Ping, SONG Shu-Fen
School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004

全文: PDF (406 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 考虑到人脸识别中全局与局部信息的互补作用,提出基于全局和分离部件相结合的双L1稀疏表示人脸图像识别算法。首先在L1稀疏表示的基础上,对人脸进行全局稀疏逼近。其次,在分离部件识别模型中,抽取并对齐稍有重叠的几个人脸部件,分别进行稀疏表示,然后使用基于稀疏表示残差的相似度投票方法,将各部件逼近结果综合。最后在决策层上将全局与部件的稀疏表示加权集成,形成双L1稀疏表示分类器。在公用人脸数据库上的实验表明,集成分类器优于各单一模块的识别性能,且由于融合了对光照、表情等变化不敏感的部件信息,系统鲁棒性得到提高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡正平
宋淑芬
关键词 人脸部件人脸识别稀疏表示L1范数    
Abstract:Considering the complementation of global and local components, bi-L1 sparse representation algorithm for face recognition based on fusion of global and separated components is proposed. Firstly, based on L1 sparse representation, the global information is used to obtain the global sparse approximation. Then, several slightly overlapping face components are extracted and aligned in the recognition model of separated components. After that, the sparse representation of all the components is obtained respectively. The sparse approximation results of each component are combined with a similarity voting method based on the residuals of class representation. Finally, the weighted integration of the global and components sparse representation is used to construct the bi-L1 sparse representation classifier in decision-making layer. The experimental results on public available database demonstrate that the performance of the integration classifier is superior to that of each single module. Due to the fusion of component information which is insensitive to variation of illumination and expression etc., the robustness of the system is enhanced.
Key wordsFace Component    Face Recognition    Sparse Representation    L1 Norm   
收稿日期: 2011-04-20     
ZTFLH: TP391.41  
基金资助:国家自然科学基金(No.61071199)、河北省自然科学基金(No.F2010001297)、中国博士后自然科学基金(No.20080440124)和第二批中国博士后科学基金(No.200902356)资助项目
作者简介: 胡正平,男,1970年生,教授,博士后,主要研究方向为稀疏模式识别。E-mail:hzp@ysu。edu。cn。宋淑芬,女,1987年生,硕士研究生,主要研究方向为稀疏表示分类模型。E-mail:songshufen520@163。com。
引用本文:   
胡正平,宋淑芬. 基于全局和分离部件融合的双L1稀疏表示人脸图像识别算法[J]. 模式识别与人工智能, 2012, 25(2): 256-261. HU Zheng-Ping, SONG Shu-Fen. Bi-L1 Sparse Representation Algorithm for Face Recognition Based on Fusion of Global and Separated Components. , 2012, 25(2): 256-261.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2012/V25/I2/256
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn