模式识别与人工智能
2025年3月13日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2021, Vol. 34 Issue (11): 1004-1016    DOI: 10.16451/j.cnki.issn1003-6059.202111004
“深度学习设计与应用”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于2D循环卷积和难度敏感轮廓交并比损失的Deep Snake
李豪1, 袁广林1, 李从利2, 秦晓燕1, 朱虹1
1.中国人民解放军陆军炮兵防空兵学院 信息工程系 合肥 230031
2.中国人民解放军陆军炮兵防空兵学院 兵器工程系 合肥 230031
Deep Snake with 2D-Circular Convolution and Difficulty Sensitive Contour-IoU Loss
LI Hao1, YUAN Guanglin1, LI Congli2, QIN Xiaoyan1, ZHU Hong1
1. Department of Information Engineering, Army Academy of Artillery and Air Defense of People's Liberation Army of China, Hefei 230031
2. Department of Ordnance Engineering, Army Academy of Artillery and Air Defense of People's Liberation Army of China, Hefei 230031

全文: PDF (6282 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 Deep Snake端到端地变形初始目标框到目标轮廓,能提升实例分割的性能,但存在对初始目标框敏感和轮廓参数独立回归的问题.因此文中提出基于2D循环卷积和难度敏感轮廓交并比损失的Deep Snake.首先,基于轮廓的空间上下文信息设计2D循环卷积,解决对初始目标框敏感的问题.然后,基于定积分的几何意义与样本难易度提出难度敏感轮廓交并比损失函数,将轮廓参数进行整体回归.最后,利用2D循环卷积和难度敏感轮廓交并比损失函数完成实例分割.在Cityscapes、Kins、Sbd数据集上的实验证明文中方法的实例分割精度较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李豪
袁广林
李从利
秦晓燕
朱虹
关键词 实例分割深度主动轮廓循环卷积难度敏感轮廓交并比损失    
Abstract:The initial bounding box is deformed to the object contour end-to-end by Deep Snake, and the performance of instance segmentation is significantly improved. However, the problems of sensitivity to the initial bounding box and independent regression of contour parameters emerge. To address these issues, Deep Snake with 2D-circular convolution and difficulty sensitive intersection over union(contour-IoU) loss is proposed. Firstly, 2D-circular convolution is designed based on the spatial context information of the contour to solve the problem of sensitivity to the initial bounding box. Secondly, difficulty sensitive contour-IoU loss function is proposed according to the geometric meaning of the definite integral and the difficulty of the sample to regress the contour parameters as a whole unit. Finally, instance segmentation is accomplished by the proposed 2D-circular convolution and difficulty sensitive contour-IoU loss function. Experiments on Cityscapes, Kins and Sbd datasets show that the proposed method achieves better segmentation accuracy.
Key wordsInstance Segmentation    Deep Active Contour    Circular Convolution    Difficulty Sensitive    Contour-Intersection over Union Loss   
收稿日期: 2021-07-08     
ZTFLH: TP 391.41  
基金资助:安徽省自然科学基金项目(No.2008085QF325)资助
通讯作者: 袁广林,博士,副教授,主要研究方向为计算机视觉、机器学习及其应用.E-mail:1183212999@qq.com.   
作者简介: 李 豪,硕士研究生,主要研究方向为实例分割、目标跟踪、目标检测.E-mail:HaoLi086@163.com.
李从利,硕士,教授,主要研究方向为计算机视觉.E-mail:lcliqa@163.com.
秦晓燕,硕士,副教授,主要研究方向为目标检测、机器学习及其应用.E-mail:70853559@qq.com.
朱 虹,硕士,讲师,主要研究方向为图像处理、计算机视觉.E-mail:729039126@qq.com.
引用本文:   
李豪, 袁广林, 李从利, 秦晓燕, 朱虹. 基于2D循环卷积和难度敏感轮廓交并比损失的Deep Snake[J]. 模式识别与人工智能, 2021, 34(11): 1004-1016. LI Hao, YUAN Guanglin, LI Congli, QIN Xiaoyan, ZHU Hong. Deep Snake with 2D-Circular Convolution and Difficulty Sensitive Contour-IoU Loss. , 2021, 34(11): 1004-1016.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202111004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2021/V34/I11/1004
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn