模式识别与人工智能
2025年4月23日 星期三   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (1): 58-72    DOI: 10.16451/j.cnki.issn1003-6059.202401005
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于融合Lasso的非参数加性分位数回归模型
付漫侠1, 周水生1
1.西安电子科技大学 数学与统计学院 西安 710126
Nonparametric Additive Quantile Regression Model Based on Fused Lasso
FU Manxia1, ZHOU Shuisheng1
1. School of Mathematics and Statistics, Xidian University, Xi'an 710071

全文: PDF (764 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 加性分位数回归为非线性关系的建模提供一种灵活、鲁棒的方法.拟合加性分位数模型的方法通常使用样条函数逼近分量,但需要先验的选择节点,计算速度较慢,并不适合大规模数据问题.因此文中提出基于融合Lasso的非参数加性分位数回归模型(Nonparametric Additive Quantile Regression Model Based on Fused Lasso, AQFL),是在融合Lasso罚和l2罚之间折衷的可对加性分位数回归模型进行估计和变量选择的模型.融合Lasso罚使模型能快速计算,并在局部进行自适应,从而实现对所需分位数甚至极端分位数的预测.同时结合l2罚,在高维数据中将对响应影响较小的协变量函数值压缩为零,实现变量的选择.此外,文中给出保证收敛到全局最优的块坐标ADMM算法(Block Coordinate Alternating Direction Method of Multipliers, BC-ADMM),证明AQFL的预测一致性.在合成数据和碎猪肉数据上的实验表明AQFL在预测准确性和鲁棒性等方面较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
付漫侠
周水生
关键词 分位数回归加性模型融合Lasso罚l2    
Abstract:Additive quantile regression provides a flexible and robust method for modeling non-linear relationships. Methods for fitting the additive quantile models rely on spline functions to approximate components. However, the required prior selection of nodes results in slow computation speed and it renders the methods unsuitable for large-scale data problems. Therefore, a nonparametric additive quantile regression model based on the fused Lasso(AQFL) is proposed in this paper. AQFL leverages a compromise between the fused Lasso penalty and the l2 penalty for estimating and selecting variables in the additive quantile regression model. The fused Lasso penalty is employed to make the model compute fast and localize adaptively, thereby achieving the prediction for the desired quantile or even extreme quantiles. Additionally, in combination with the l2 penalty, AQFL compresses the covariate function values with a small impact on the response to zero in high-dimensional data, thereby achieving variable selection. Furthermore, a block coordinate alternating direction method of multipliers(BC-ADMM) algorithm is presented to ensure convergence to the global optimum and demonstrate the prediction consistency of AQFL. Experimental results on synthetic data and ground pork data demonstrate the superiority of AQFL in prediction accuracy and robustness.
Key wordsQuantile Regression    Additive Model    Fused Lasso Penalty    l2 Penalty   
收稿日期: 2023-10-20     
ZTFLH: TP181  
基金资助:陕西省自然科学基础研究计划资助项目(No.2024JC-YBMS-051)资助
通讯作者: 周水生,博士,教授,主要研究方向为最优化理论与算法、模式识别及应用、智能信息处理、机器学习等.E-mail: sszhou@mail.xidian.edu.cn.   
作者简介: 付漫侠,硕士研究生,主要研究方向为最优化计算理论与算法、模式识别及应用.E-mail: 21071212648@stu.xidian.edu.cn.
引用本文:   
付漫侠, 周水生. 基于融合Lasso的非参数加性分位数回归模型[J]. 模式识别与人工智能, 2024, 37(1): 58-72. FU Manxia, ZHOU Shuisheng. Nonparametric Additive Quantile Regression Model Based on Fused Lasso. Pattern Recognition and Artificial Intelligence, 2024, 37(1): 58-72.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202401005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I1/58
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn