模式识别与人工智能
2025年8月7日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (4): 368-382    DOI: 10.16451/j.cnki.issn1003-6059.202404007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
多尺度决策系统中测试代价敏感的属性与尺度同步选择
廖淑娇1,2,3,4, 吴迪1,2,3,4, 卢亚倩1,2,3,4, 范译文1,2,3,4
1.闽南师范大学 数学与统计学院 漳州 363000;
2.闽南师范大学 福建省粒计算及其应用重点实验室 漳州 363000;
3.闽南师范大学 数字福建气象大数据研究所 漳州 363000;
4.闽南师范大学 数据科学与统计重点实验室 漳州 363000
Test Cost Sensitive Simultaneous Selection of Attributes and Scales in Multi-scale Decision Systems
LIAO Shujiao1,2,3,4, WU Di1,2,3,4, LU Yaqian1,2,3,4, FAN Yiwen1,2,3,4
1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000;
2. Fujian Key Laboratory of Granular Computing and Applications, Minnan Normal University, Zhangzhou 363000;
3. Institute of Meteorological Big Data-Digital Fujian, Minnan Normal University, Zhangzhou 363000;
4. Fujian Key Laboratory of Data Science and Statistics, Minnan Normal University, Zhangzhou 363000

全文: PDF (807 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

属性与尺度同步选择方法可有效解决涉及代价因素的多尺度决策系统的知识约简问题,然而在现有研究中,少有基于代价进行属性与尺度的同步选择,并且大多数算法只针对协调的多尺度决策系统或不协调的多尺度决策系统.为了解决这一问题,文中以最小化数据处理的总测试代价为目标,提出测试代价敏感的属性与尺度同步选择算法,同时适用于协调的多尺度决策系统和不协调的多尺度决策系统.首先,构造基于粗糙集的理论模型,模型中的概念及性质同时考虑属性因素和尺度因素.其次,基于粗糙集的理论模型,设计启发式算法,能基于测试代价对多尺度决策系统同时进行属性约简与尺度选择,并且不同的属性可选择不同的尺度.最后,在12个数据集上的实验验证文中算法的有效性、实用性及优越性.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖淑娇
吴迪
卢亚倩
范译文
关键词 属性与尺度选择代价敏感学习多尺度决策系统粗糙集单调性    
Abstract

Multi-scale decision system is one of hot issues in the field of data mining, and cost factors appear frequently in data mining. A method for simultaneous selection of attributes and scales can effectively solve the knowledge reduction problem of multi-scale decision systems involving cost factors. However, in the existing research, there are few studies on the simultaneous selection of attributes and scales based on costs, and most of the algorithms only focus on consistent or inconsistent multi-scale decision systems. To address this issue, a test cost sensitive method for simultaneously selecting attributes and scales is proposed with the goal of minimizing the total test cost of data processing. The method is applicable to both consistent and inconsistent multi-scale decision systems. Firstly, a theoretical model is constructed based on rough set. In the model, both the attribute factor and the scale factor are taken intoaccount by concepts and properties. Secondly, a heuristic algorithm is designed based on the theoretical model. By the proposed algorithm, attribute reduction and scale selection can be simultaneously performed in the multi-scale decision systems based on test costs, and different attributes can choose different scales. Finally, the experiments verify the effectiveness, practicality and superiority of the proposed algorithm.

Key wordsAttribute and Scale Selection    Cost-Sensitive Learning    Multi-scale Decision System    Rough Set    Monotonicity   
收稿日期: 2024-01-24     
ZTFLH: TP 18  
基金资助:

国家自然科学基金项目(No.12101289)资助

通讯作者: 廖淑娇,博士,教授,主要研究方向为粒计算、数据挖掘、人工智能.E-mail:sjliao2011@163.com.   
作者简介: 吴 迪,硕士研究生,主要研究方向为粗糙集、粒计算、数据挖掘.E-mail:wudi20172021@163.com. 卢亚倩,硕士研究生,主要研究方向为粗糙集、粒计算、数据挖掘.E-mail:luyaqian256@163.com. 范译文,硕士研究生,主要研究方向为粗糙集、粒计算、数据挖掘.E-mail:1483426583@qq.com.
引用本文:   
廖淑娇, 吴迪, 卢亚倩, 范译文. 多尺度决策系统中测试代价敏感的属性与尺度同步选择[J]. 模式识别与人工智能, 2024, 37(4): 368-382. LIAO Shujiao, WU Di, LU Yaqian, FAN Yiwen. Test Cost Sensitive Simultaneous Selection of Attributes and Scales in Multi-scale Decision Systems. Pattern Recognition and Artificial Intelligence, 2024, 37(4): 368-382.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202404007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I4/368
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn