模式识别与人工智能
2025年4月1日 星期二   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (8): 678-691    DOI: 10.16451/j.cnki.issn1003-6059.202408002
现实场景下的检测与识别算法 最新目录| 下期目录| 过刊浏览| 高级检索 |
语义重建的动态监督伪装物体检测
姜文涛1, 王柏涵1
1.辽宁工程技术大学 软件学院 葫芦岛 125105
Dynamic Supervised Camouflaged Object Detection with Semantic Reconstruction
JIANG Wentao1, WANG Bohan1
1. School of Software, Liaoning Technical University, Huludao 125105

全文: PDF (2940 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 伪装物体检测旨在分离视觉上高度融入周围环境的物体,但是物体前景与背景存在大量相似干扰,导致分割过程中易于出现明显错误.针对上述问题,文中提出基于语义重建的动态监督伪装物体检测网络(Dynamic Supervised Camouflaged Object Detection Network with Semantic Reconstruction, DSSRNet),通过重建特征图的空间语义和引入置信度指导网络训练,实现对伪装物体的准确分割.首先,提出空间语义低秩重建机制,精细感知不同尺度下伪装物体具有区分性的语义特征.然后,生成预测置信度图,对分割过程进行动态监督,减少网络因过于自信造成的假阳性和假阴性判断.最后,提出模糊感知损失函数,对网络施加强约束,改善预测时产生的图像模糊问题.在3个具有挑战性的基准数据集上的实验表明,DSSRNet可较好地排除相似信息干扰,取得精准的分割效果.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜文涛
王柏涵
关键词 伪装物体检测图像分割空间语义重建置信度学习动态监督    
Abstract:Camouflaged object detection(COD) aims to segment target objects that are visually highly integrated into their surrounding environments. However, a large number of similar interferences between the foreground and background of the object lead to significant segmentation errors in the process. To address this issue, dynamic supervised camouflaged object detection network with semantic reconstruction(DSSRNet) is proposed to achieve accurate segmentation of camouflaged objects by reconstructing the spatial semantics of the feature map and introducing confidence to guide network training. Firstly, a spatial semantic low-rank reconstruction mechanism is proposed to effectively perceive distinguishable semantic features of camouflaged objects at different scales. Secondly, the COD network is dynamically supervised by generating confidence prediction maps to minimize false positive and false negative judgments due to the overconfidence in the network. Finally, the blurred awareness loss function is employed to reduce the ambiguity of the prediction. Experiments on CAMO-Test, COD10K-Test and NC4K datasets demonstrate that DSSRNet provides better exclusion of interference and achieves more accurate segmentation results.
Key wordsCamouflaged Object Detection    Image Segmentation    Spatial Semantics Reconstruction    Confidence Learning    Dynamic Supervision   
收稿日期: 2024-04-26     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.61172144)、辽宁省自然科学基金项目(No.20170540426)、辽宁省教育厅重点基金项目(No.LJYL049)资助
通讯作者: 姜文涛,博士,副教授,主要研究方向为图像处理、模式识别、人工智能.E-mail:jiangwentao@lntu.edu.cn.   
作者简介: 王柏涵,硕士研究生,主要研究方向为图像处理、模式识别、人工智能.E-mail:wangbhmero@foxmail.com.
引用本文:   
姜文涛, 王柏涵. 语义重建的动态监督伪装物体检测[J]. 模式识别与人工智能, 2024, 37(8): 678-691. JIANG Wentao, WANG Bohan. Dynamic Supervised Camouflaged Object Detection with Semantic Reconstruction. Pattern Recognition and Artificial Intelligence, 2024, 37(8): 678-691.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202408002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I8/678
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn