模式识别与人工智能
2025年4月2日 星期三   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (8): 692-702    DOI: 10.16451/j.cnki.issn1003-6059.202408003
现实场景下的检测与识别算法 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于改进RetinaNet的轻量化钢材表面缺陷检测算法
王伟家1, 张宇2, 王京华1, 徐勇1
1.哈尔滨工业大学(深圳) 计算机科学与技术学院 深圳 518055;
2.河钢数字技术股份有限公司 智能装备事业部 石家庄 053099
Lightweight Steel Surface Defect Detection Algorithm Based on Improved RetinaNet
WANG Weijia1, ZHANG Yu2, WANG Jinghua1, XU Yong1
1. School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055;
2. Intelligent Equipment Division, HBIS Digital Technology Co., Ltd., Shijiazhuang 053099

全文: PDF (1626 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 相对实际应用需求而言,现有的钢材表面缺陷检测算法存在检测速度较慢、准确率较低等问题.因此,文中提出基于改进RetinaNet的轻量化钢材表面缺陷检测算法.首先,将原有的骨干网络替换为轻量化网络,引入跨阶段局部结构,实现梯度的有效传播和轻量化.然后,采用深度可分离卷积替换传统卷积层,进一步降低参数量,提高检测速度.为了弥补轻量化导致的算法精度下降问题,提出基于跨阶段局部结构的空间金字塔池化机制,融合不同尺度的特征,有效提升算法的检测精度.在NEU-DET数据集和自建的HBIS数据集上的实验表明,相比已有的缺陷检测算法,文中算法在精度更高的同时,达到更快的检测速度,相应的软硬件系统满足生产线的实时在线检测要求并已上线运行.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟家
张宇
王京华
徐勇
关键词 轻量化建模目标检测跨阶段局部结构钢材表面缺陷检测    
Abstract:For the requirement of the practical application, the existing defect detection algorithms suffer from the problems of slow detection speed and low detection accuracy. To address these issues, a lightweight steel surface defect detection algorithm based on improved RetinaNet is proposed. Firstly, the original backbone network is replaced by a lightweight network, and a cross-stage-partial structure is introduced to achieve effective propagation and lightweighting of gradients. Then, depth-separable convolution is employed to replace the traditional convolutional layer to further reduce the number of parameters and improve the detection speed. To compensate for the decrease in model accuracy caused by lightweighting, a spatial pyramid pooling mechanism based on the cross-stage partial structure is designed. The detection accuracy of the model is effectively improved by feature fusion at different scales. Finally, experiments on NEU-DET dataset and the self-built HBIS dataset demonstrate the proposed algorithm reaches a faster detection speed and higher accuracy. Moreover, the corresponding hardware and software system meets the real-time online detection requirements of the production line and it has been put into service.
Key wordsLightweight Modeling    Object Detection    Cross-Stage Partial Structure    Steel Surface Defect Detection   
收稿日期: 2024-02-29     
ZTFLH: TP391  
通讯作者: 徐 勇,博士,教授,主要研究方向为模式识别、深度学习.E-mail:laterfall@hit.edu.cn.   
作者简介: 王伟家,硕士研究生,主要研究方向为计算视觉、目标检测.E-mail:21S051039@stu.hit.edu.cn. 张 宇,学士,主要研究方向为计算机视觉、缺陷检测.E-mail:1737238992@qq.com. 王京华,博士,副教授,主要研究方向为计算机视觉、无监督学习.E-mail:wangjh2012@foxmail.com.
引用本文:   
王伟家, 张宇, 王京华, 徐勇. 基于改进RetinaNet的轻量化钢材表面缺陷检测算法[J]. 模式识别与人工智能, 2024, 37(8): 692-702. WANG Weijia, ZHANG Yu, WANG Jinghua, XU Yong. Lightweight Steel Surface Defect Detection Algorithm Based on Improved RetinaNet. Pattern Recognition and Artificial Intelligence, 2024, 37(8): 692-702.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202408003      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I8/692
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn