在分布式环境下,实现隐私保护的数据挖掘,已成为该领域的研究热点。文中着重研究在垂直分布数据中,实现隐私保护的决策树分类模型。该模型创建新型的隐私保护决策树,即由在茫然半诚实方存储的全局决策表和各站点存储的局部决策树组成,并结合索引数组和秘密数据比较协议,实现在不泄漏原始信息的前提下决策树的生成和分类。经过理论分析和实验验证,证明该模型具有较好的安全性、准确性和适用性。
针对最大模糊熵图像阈值分割算法计算量太大的问题,文中在分析S型隶属函数特点和模糊熵性质的基础上,提出一种最大模糊熵阈值法的快速算法。该算法将最大模糊熵阈值分割算法的时间复杂度由O(L4)降到O(L3),同时避免优化算法易于陷入局部极值的缺陷。该快速算法可在提高算法速度的同时保证最大模糊熵阈值法的分割性能。
为了利用径向基函数(RBF)神经网络对混沌序列进行精确和快速的在线预测,提出一种在线构造变结构RBF神经网络的序贯学习算法。该算法建立实时更新的滑动数据窗口,通过学习窗口内的数据对隐节点进行增加和删除,动态确定RBF神经网络隐节点的数目及中心位置,并对隐层至输出层的连接权值进行在线调整。该算法具有调节参数少、学习速度快以及所得网络结构精简等特点。将该网络用于Mackey-Glass混沌时间序列的在线预测实验,结果验证该算法对该混沌序列具有良好的在线动态辨识和预测性能。
最小最大概率机是基于错分概率最小化的新型分类器。文中讨论一维空间两类别最小最大概率问题的求解。以此为基础,给出图像阈值分割最小最大概率分割点的定义,提出设计阈值分割准则函数的方法,同时提出基于最小最大概率准则的阈值分割算法,此算法保证图像阈值分割正确率的下界。实验表明,文中方法是有效的。
针对直接利用最小二乘支持向量机(LSSVM)对动态过程在线建模时预测精度易受过程输出测量值上的粗大误差和噪声影响的问题,在分析样本序列结构特征和噪声作用特征基础上,提出一种基于无偏置项LSSVM的稳健在线过程建模方法。该方法在每一预测周期中根据预测误差与设定阈值之间的关系来识别和恢复异常测量值、识别和修正含噪声测量值,从而降低样本中的噪声,使得出的LSSVM较好地跟踪过程的动态特性。这种在线过程建模方法具有稳健性,能减少输出值上粗大误差和高斯白噪声对LSSVM预测精度的影响,提高预测精度。数字仿真显示该方法的有效性和优越性。