针对目前种子优化算法存在的空间探索能力不足、后代个体分布多样性较弱的问题,文中提出基于柯西分布和父种轮换机制的种子优化算法.首先,构建基于柯西分布的种群分布模型,用于前期探索阶段,提升算法的全局搜索能力.然后,建立基于赌轮法的父种轮换机制,提高后代种群的多样性.最后,构建个体距离阈值、分布方差和后代比例的自适应调整机制,提高算法对复杂优化问题的动态寻优能力.实验表明,文中算法的平均适应度值和弗里德曼检测指标排名均较优.
为了提高基于正态分布模型的分布估计算法子代候选解的质量,防止早熟收敛,文中提出多种群伪正态分布估计算法.首先,采用佳点集方法进行种群初始化,将种群分为3个子群.然后,采用样本重心取代样本均值的方式,获得伪正态分布模型.最后,融合种群与子群伪正态分布模型,得到子群进化的概率模型.23个基准函数的对比测试表明,文中算法在求解质量和收敛速度上较优.针对多约束条件下的并行装配优化问题,提出工序池、员工池、罚函数等措施,将具有工序约束和人员约束的离散组合优化问题转化为无约束的多种群伪正态分布估计优化问题.工程应用结果表明,只需要将候选解的无限集合修正为有限集合,文中算法可方便地用于离散组合优化问题的快速求解.