针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Layer Heterogeneous Graph Attention Network, GDHG).GDHG包含节点注意力机制和门控异构图注意力网络两层.首先,使用节点注意力机制,训练不同类型的节点注意力系数,再将系数输入门控异构图注意力网络,训练得到门控双层注意力.然后,将门控双层注意力与节点的不同状态相乘,得到聚合的节点特征.最后,使用softmax函数对文本进行分类.GDHG利用节点注意力机制和门控异构图注意力网络的信息遗忘机制对节点信息进行聚集,得到有效的相邻节点信息,进而挖掘不同邻居节点的隐藏信息,提高聚合远程节点信息的能力.在Twitter、MR、Snippets、AGNews四个短文本数据集上的实验验证GDHG性能较优.
针对黏菌优化算法(Slime Mould Algorithm, SMA)的寻优过程存在收敛效率较低、容易陷入局部最优解等问题,文中提出融合多策略改进的黏菌优化算法(Improved SMA Fused with Multi-strategy, MISMA).引入Halton序列,丰富初始种群的多样性,提升算法寻优的遍历性和收敛精度.融入差分变异思想,改进算法的全局位置更新公式,强化全局探索能力,增强算法的持续寻优性能.糅合改进收敛因子和精英选择机制的局部搜索策略,提升算法的局部开采能力,更好地平衡算法的全局探索与局部开发进程.基于动态边界的透镜成像学习策略改善个体的质量,加强算法反早熟及摆脱局部最优解的能力.在13个基准函数及部分CEC2014测试函数上的数值仿真实验表明,MISMA具有较强的鲁棒性.此外,在光伏电池组件模型参数优化实验上进一步验证MISMA在处理实际工程优化问题时的优越性及适用性.