模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2007, Vol. 20 Issue (3): 377-381    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于小波变换、二维主元分析与独立元分析的人脸识别方法*
甘俊英1,2,李春芝1
1.五邑大学 信息学院 江门 529020
2.北京大学 视觉与听觉信息处理国家重点实验室 北京 100871
Face Recognition Based on Wavelet Transform, TwoDimensional Principal Component Analysis and Independent Component Analysis
GAN JunYing1,2, LI ChunZhi1
1.School of Information, Wuyi University, Jiangmen 529020
2.National Laboratory on Machine Perception, Peking University, Beijing 100871

全文: PDF (333 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 结合小波变换(WT)、二维主元分析(2DPCA)和独立元分析(ICA)的特点,提出一种人脸识别方法.首先,利用小波变换将原始图像分解为高频分量和低频分量,并忽略水平高频与垂直高频分量,从而消除噪声.然后,通过2DPCA对该图像进行降维,求得白化矩阵.再利用ICA获得训练样本的独立元成分,同时求得训练样本独立基构造的独立基子空间.最后,将训练样本与测试样本分别朝该独立基子空间投影,获得样本的投影特征,并依据最近邻准则完成人脸识别.基于ORL与Yale人脸数据库的实验结果表明,本文方法正确识别率高于2DPCA、2DPCAICA与WT2DPCA算法.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘俊英
李春芝
关键词 人脸识别二维主元分析(2DPCA)独立元分析(ICA)小波变换(WT)    
Abstract:Combined with wavelet transform (WT), twodimensional principal component analysis (2DPCA) and independent component analysis (ICA), a method for face recognition is presented. Firstly, the original images are decomposed into highfrequency and lowfrequency components by using WT. The horizontal and vertical highfrequency components are ignored, and the noise is eliminated. Then, dimension reduction is performed by 2DPCA, and a whitened matrix is obtained. The independent components of training samples are acquired by ICA. Meanwhile, an independent basis subspace is constructed by the independent basis of training samples. Finally, the projected features of training and the testing samples on the independent basis subspace are gained, therefore face recognition can be realized according to the nearest neighbour rule. Experimental results on Olivetti Research Laboratory (ORL) and Yale face database show that the recognition rate by the proposed method is higher than that by 2DPCA, 2DPCAICA, and WT2DPCA respectively.
Key wordsFace Recognition    TwoDimensional Principal Component Analysis (2DPCA)    Independent Component Analysis (ICA)    Wavelet Transform (WT)   
收稿日期: 2005-07-04     
ZTFLH: TP391.4  
基金资助:广东省自然科学基金(No.032356)、北京大学视觉与听觉信息处理国家重点实验室开放课题基金(No.0505)资助项目
作者简介: 甘俊英,女,1964年生,教授,博士,主要研究方向为生物特征识别等.Email:jygan@wyu.cn.李春芝,女,1982年生,硕士研究生,主要研究方向为生物特征信息处理与识别等.
引用本文:   
甘俊英,李春芝. 基于小波变换、二维主元分析与独立元分析的人脸识别方法*[J]. 模式识别与人工智能, 2007, 20(3): 377-381. GAN JunYing , LI ChunZhi. Face Recognition Based on Wavelet Transform, TwoDimensional Principal Component Analysis and Independent Component Analysis. , 2007, 20(3): 377-381.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2007/V20/I3/377
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn