Abstract:To improve the poor performance of the existing salient object detection algorithms in edge perception, a salient object detection algorithm based on stack edge-aware module is proposed to utilize high-level semantic information and low-level texture information effectively. Multi-scale backbone network is utilized as the backbone network to extract the multi-scale and multi-target salient features. In stacked edge-aware module, the high-level information and low-level information of the image are combined in an asymmetric manner to enhance the area of the salient object. The network outputs salient object detection results. The experiments on five public datasets indicate that the proposed algorithm produces better detection results and better performance in objective evaluation indicators and subjective visual effects.
[1] LEE H, KIM D. Salient Region-Based Online Object Tracking // Proc of the IEEE Winter Conference on Applications of Computer Vision. Washington, USA: IEEE, 2018: 1170-1177. [2] AYE H M, ZAW S M M. Salient Object Based Action Recognition Using Histogram of Changing Edge Orientation(HCEO) // Proc of the 15th IEEE International Conference on Software Engineering Research, Management and Applications. Washington, USA: IEEE, 2017: 115-122. [3] 鲍蕾,陆建江,李阳,等.基于全局和局部信息融合的图像显著性检测.模式识别与人工智能, 2015, 28(3): 275-281. (BAO L, LU J J, LI Y, et al. Image Saliency Detection Based on Global and Local Information Fusion. Pattern Recognition and Artificial Intelligence, 2015, 28(3): 275-281.) [4] 王延召,彭国华,延伟东.基于流形排序和联合连通性先验的显著性目标检测.模式识别与人工智能, 2019, 32(1): 82-93. (WANG Y Z, PENG G H, YAN W D. Salient Object Detection Based on Manifold Ranking and Co-connectivity. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 82-93.) [5] SHELHAMER E, LONG J, DARRELL T. Fully Convolutional Networks for Semantic Segmentation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 3431-3440. [6] WANG W G, LAI Q X, FU H Z, et al. Salient Object Detection in the Deep Learning Era: An In-Depth Survey[J/OL].[2020-07-12]. https://arxiv.org/pdf/1904.09146.pdf. [7] LI G B, YU Y Z. Visual Saliency Based on Multiscale Deep Features // Proc of the IEEE Conference on Computer Vision and Pa-ttern Recognition. Washington, USA: IEEE, 2015: 5455-5463. [8] ZHANG P P, WANG D, LU H C, et al. Learning Uncertain Convolutional Features for Accurate Saliency Detection // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 212-221. [9] LUO Z M, MISHRA A, ACHKAR A, et al. Non-local Deep Features for Salient Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 6593-6601. [10] ZHANG P P, WANG D, LU H C, et al. Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 202-211. [11] WANG T T, BORJI A, ZHANG L H, et al. A Stagewise Refinement Model for Detecting Salient Objects in Images // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 4039-4048. [12] LIU N, HAN J W. DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 678-686. [13] WU Z, SU L, HUANG Q M. Stacked Cross Refinement Network for Edge-Aware Salient Object Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2019: 7263-7272. [14] WU Z, SU L, HUANG Q M. Cascaded Partial Decoder for Fast and Accurate Salient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 3902-3911. [15] HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 770-778. [16] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: A New Multi-scale Backbone Architecture[J/OL].[2020-07-12]. https://ieeexplore.ieee.org/document/8821313. [17] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [18] CHEN Z Y, XU Q Q, CONG R M, et al.Global Context-Aware Progressive Aggregation Network for Salient Object Detection // Proc of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 10599-10606. [19] SHI J P, YAN Q, XU L, et al. Hierarchical Image Saliency Detection on Extended CSSD. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729. [20] YANG C, ZHANG L H, LU H C, et al. Saliency Detection via Graph-Based Manifold Ranking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2013: 3166-3173. [21] LI Y, HOU X D, KOCH C, et al. The Secrets of Salient Object Segmentation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 280-287. [22] WANG L J, LU H C, WANG Y F, et al. Learning to Detect Salient Objects with Image-Level Supervision // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 3796-3805. [23] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-Tuned Salient Region Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 1597-1604. [24] PERAZZI F, KRAHENBUHL P, PRITCH Y, et al. Saliency Filters: Contrast Based Filtering for Salient Region Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2012: 733-740. [25] FAN D P, GONG C, CAO Y, et al. Enhanced-Alignment Measure for Binary Foreground Map Evaluation // Proc of the 27th International Joint Conferences on Artifificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 698-704. [26] MARGOLIN R, ZELNIK-MANOR L, TAL A. How to Evaluate Foreground Maps // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 248-255. [27] REN Q H, LU S J, ZHANG J X, et al. Salient Object Detection by Fusing Local and Global Contexts[J/OL].[2020-07-12]. https://ieeexplore.ieee.org/docu-ment/9099416. [28] CHEN S H, TAN X L, WANG B, et al. Reverse Attention-Based Residual Network for Salient Object Detection. IEEE Transactions on Image Processing, 2020, 29: 3763-3776. [29] LI J X, PAN Z F, LIU Q S, et al. Stacked U-Shape Network with Channel-Wise Attention for Salient Object Detection[J/OL].[2020-07-12]. https://ieeexplore.ieee.org/document/9103129. [30] FENG M Y, LU H C, DING E. Attentive Feedback Network for Boundary-Aware Salient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 1623-1632. [31] WANG W G, ZHAO S Y, SHEN J B, et al. Salient Object Detection with Pyramid Attention and Salient Edges // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 1448-1457. [32] LI X, YANG F, CHENG H, et al. Contour Knowledge Transfer for Salient Object Detection // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 370-385.