模式识别与人工智能
2025年3月29日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2025, Vol. 38 Issue (1): 68-81    DOI: 10.16451/j.cnki.issn1003-6059.202501005
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
面向动态数据的联合自表示子空间聚类方法
张汉涛1, 赵杰煜1, 叶绪伦1
1.宁波大学 信息科学与工程学院 宁波 315211
Joint Self-Expressive Subspace Clustering Method for Dynamic Data
ZHANG Hantao1, ZHAO Jieyu1, YE Xulun1
1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211

全文: PDF (4440 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 自表示子空间聚类方法在高维数据处理中表现优秀,已成为该领域的关键技术之一.然而,传统的自表示模型通常假设数据集是静态的,难以适应动态、连续到达的数据流,会导致新旧数据存在特征异构、新到样本可能包含未知新类别等情况.因此,文中提出联合自表示子空间聚类方法(Joint Self-Expressive Subspace Clustering Method, JSSC),可适应数据流的连续到达.JSSC结合联合自表示特征学习模块和新类别样本处理模块,有效聚类新类别样本,同时确保已有类别的聚类性能不受影响.此外,该方法利用深度自动编码器学习子空间基,实现直观、可解释的表示,并通过成对目标和正则化项,同时管理已知类别和新兴类别.基准数据集上的实验表明,JSSC在聚类任务中表现较优,尤其是在处理动态数据中的新类别方面.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张汉涛
赵杰煜
叶绪伦
关键词 子空间聚类自表示学习子空间基动态数据    
Abstract:Self-expressive subspace clustering methods perform well in processing high-dimensional data and are one of the key techniques in this field. However, traditional self-expressive models typically assume that the dataset is static, and it is difficult to adapt to dynamic, continuously arriving data streams. It leads to two issues: feature heterogeneity between novel data and old data and the inclusion of unknown novel classes in newly arriving samples. To address these problems, a subspace clustering framework, joint self-expressive subspace clustering method(JSSC), is proposed. JSSC is specifically designed to handle both old and novel category samples. JSSC adapts to the continuous arrival of data streams by combining a self-expressive feature learning module with a novel category sample processing module. The proposed method effectively clusters novel category samples while maintaining strong performance on existing categories. Additionally, a deep autoencoder is utilized to learn subspace basis. Thus intuitive and interpretable representations are achieved, and the known and emerging categories are simultaneously managed through pairwise objectives and regularization terms. Experimental results on benchmark datasets show that JSSC outperforms current state-of-the-art approaches in clustering tasks, particularly excelling in handling novel categories within dynamic data.
Key wordsSubspace Clustering    Self-Expressive Learning    Subspace Basis    Dynamic Data   
收稿日期: 2024-11-04     
ZTFLH: TP183  
基金资助:国家自然科学基金项目(No.62006131,62203238,62071260)、浙江省自然科学基金项目(No.LZ22F020001,LQ21F020009,LQ18F020001)、宁波市2025关键技术创新项目(No.2023Z224)资助
通讯作者: 赵杰煜,博士,教授,主要研究方向为图像图形技术、自然交互、机器学习、计算机视觉.E-mail:Zhao_jieyu@nbu.edu.cn.   
作者简介: 张汉涛,硕士研究生,主要研究方向为计算机视觉、无监督学习、聚类分析.E-mail:zht1658924856@163.com. 叶绪伦,博士,教授,主要研究方向为贝叶斯学习、非参数聚类、凸分析.E-mail:yexlwh@163.com.
引用本文:   
张汉涛, 赵杰煜, 叶绪伦. 面向动态数据的联合自表示子空间聚类方法[J]. 模式识别与人工智能, 2025, 38(1): 68-81. ZHANG Hantao, ZHAO Jieyu, YE Xulun. Joint Self-Expressive Subspace Clustering Method for Dynamic Data. Pattern Recognition and Artificial Intelligence, 2025, 38(1): 68-81.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202501005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2025/V38/I1/68
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn