本文原创性地提出知识可编程智能芯片系统(KPI-CS)及其理论和工程体系.该系统在当前最先进的异构计算和可重构人工智能(AI)芯片技术的基础上,深度融合复杂系统工程理论、知识工程理论与技术、半导体芯片研发技术、人工智能可重构算法技术,提出基于知识的可重构智能芯片和计算系统平台技术.该系统旨在支持AI应用场景适应性、AI系统重构灵活性、AI算法算力合理性的平行智能AI芯片系统平台和对应的知识服务平台.同时,作为应用展望,KPI-CS与相应的应用平台联动,为平行复杂系统管理与控制、智能交通、智能能源、平行区块链、智能医疗等研究领域和工程实践提供新一代的实时、高效、自适应的计算系统支撑.
首先提出矩阵加权项集支持度计算方法,给出面向跨语言查询扩展的矩阵加权关联模式挖掘算法.然后提出基于矩阵加权关联规则挖掘的跨语言查询译后扩展算法.借助机器翻译进行首次跨语言检索,得到前列初检文档,并经用户相关性判断后得到相关反馈文档.通过计算支持度从相关反馈文档中挖掘含有原查询词的矩阵加权频繁项集,通过置信度-兴趣度评价框架从频繁项集中提取含有原查询词的关联规则,将规则的后件或前件作为扩展词,利用规则的置信度和兴趣度衡量扩展词的重要性,完成跨语言查询译后扩展.在NTCIR-5 CLIR标准测试集上的实验表明,文中算法可以有效提升跨语言查询扩展性能,有利于长查询的跨语言检索,译后后件扩展性能优于前件.
针对现有个性化学习资源推荐方法存在推荐模型单一、速度较慢和匹配度不高等问题,文中提出基于阶段衍变双向自均衡的个性化学习资源推荐方法.首先构建基于阶段衍变双向自均衡的学习资源推荐模型,完善资源推荐特征参数化表示与适应度函数构建.然后采用基于进化状态判定的模糊自适应二进制粒子群优化算法求解模型.实验表明,相比采用经典算法的推荐方法,文中方法推荐的学习资源序列匹配度更高,推荐速度更快.
受背景、阴影和反射等不同成像环境影响,固定模型难以解决植物叶片分割问题.针对此情况,文中提出基于鲁棒随机游走的交互式植物叶片分割方法,采用交互式策略对用户指定像素先验信息进行传播,通过鲁棒随机游走算法实现植物叶片分割.首先,基于随机游走算法构建成对像素的关系,建立一个超像素一致性约束模型,促使分割图像边缘更光滑.然后,通过人机交互获取指定像素先验信息.最后,利用对数似然比预测像素属于背景的概率,并用于指导标签传播.在宽松受控和非受控环境植物叶片图像上的实验表明,文中方法可以更好地得到光滑、鲁棒的植物叶片分割图.
针对单模态特征鉴别行为动作类别的能力有限问题,提出基于RGB-D视频中多模态视觉特征融合和实例化多重核超限学习(Exemplars-MKL-ELM)的动作分类方法.首先,利用骨架表面拟合和密集轨迹提取稳健的密集运动姿态特征,以稠密点云法平面感知人体3维几何的稀疏化有向主成分直方图特征,提取外观纹理嵌入身体节点空-时邻域的三维梯度直方图特征.然后,采用半径边缘约束多重核超限学习机融合多模态视觉特征,并利用对比数据法挖掘每个行为类别的代表性实例集合.最后,每个样本结合融合视觉特征和即得实例集合,采用Exemplars-MKL-ELM模型和贪婪预测思想分层分类识别行为.实验表明,文中方法在分类准确度和计算效率上都较优.